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Start with the equations of compressible viscous and 
resistive MHD:

Also need an equation of state  P = P(r,T).  Usually adopt the ideal gas law    
P=nkT    or    P = (g-1)e   where for monoatomic gas (H), g=5/3
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Numerical methods for MHD equations can 
be classified by discretization strategy

Methods based on a spatial mesh
• Finite difference
• Finite volume
• Central schemes 

Methods based on a spectral decomposition
• Global basis (Fourier, Chebyshev)
• Local polynomials (discontinuous Galerkin)

Methods based on Lagrangian (particle) mesh
• Smooth Particle Hydrodynamics (SPH)

Each method has various strengths/weaknesses.
In this lecture, focus on finite volume (FV) methods.

But before discussing details, a quick review of basic numerical 
numerical analysis…



Not all numbers on real axis can be represented.

If floating point operations result in a number that cannot be 
represented, some sort of rounding must be used. 

Round-off error

Rounding is correct if no machine number lies between x and its 
rounded value x’.  Difference between x and x’ is the round-off 
error.

Can be rigorously proved that the relative error of a rounded value is 
bounded by a small, machine dependent number (the machine 
precision), that is

Basis for all rigorous error analyses of numerical methods



Truncation error
Numerical algorithms approximate the true (analytic) solution 
using algebraic operations.

Difference between true and approximate (numerical) solution is 
truncation error.  

TE is not related to the finite precision of numbers on a computer 
(round-off error).  Would exist even on a perfect machine with no 
round-off error.

TE is under programmer’s control.  Much of numerical analysis is 
trying to reduce it.



Convergence, consistency, and stability
Convergence: truncation error should decrease as grid spacing Dx decreases 
(numerical resolution increases).

Higher order schemes converge faster, so in general are better.

But, (1) cost and code complexity put a practical limit on the usefulness of high-
order schemes, (2) all methods are first-order for discontinuities, so good shock 
capturing is essential.

In practice, ”flops are free” on modern processors, which makes high-order 
schemes very attractive in the future.

Consistency: Solution of the discrete equations should be consistent with 
solutions of the underlying PDEs.  Solution should converge to the analytic 
solution.

Stability: discrete equations must not admit any exponentially growing 
solutions, as they will be seeded by round-off error and eventually dominate.



Finite differencing
Simplest discretization of the simplest hyperbolic PDE (scalar 
linear advection equation) is forward-time centered-space (FTCS):

becomes

Perform von Neumann stability analysis.
For constant coefficients, the analytic solution to the difference 
equation is of the form:

Substitute this form into FDE, find

Note that                  for all Dt > 0

Method is unconditionally unstable.



Lax-Friedrichs
Change time derivative in FTCS to use average of u at tn, get LF:

 von Neumann stability analysis now gives:

This has                   iff

This is the Courant-Levy-Friedrichs (CFL) stability criterion.

Why does LF work and FTCS does not?  Rewrite difference equation:

This is just FD form for the mixed PDE:

LF adds explicit viscosity which makes algorithm stable. 



Upwind methods
Write spatial derivative using one-sided differences that depend on 
sign of velocity
       if a > 0

       if a < 0

Remarkably, can rewrite upwind FDE in same form as LF:

So upwind method also adds explicit diffusion, with
Define the “CFL number”   

which is the ratio of timestep to maximum stable timestep.
For C < 1, upwind methods add less diffusion than LF.  



Diffusion versus dispersion error
Analytic solution to FDE may approximate a PDE (the modified 
equation) that is different from the one we are trying to solve.
 e.g. we saw LF FDE actually solves:

Clearly, LF (and first-order upwind) FDE add diffusion error.

Can show some methods (e.g. LW) add dispersion error (different 
k propagate at different speeds).  

Dispersion error can be a serious problem for discontinuous solutions. 



FV methods are the extension of upwind schemes to the full 
system of MHD equations.

Can show truncation error in FV methods is strictly 
diffusive.  Very desirable property for numerical methods. 

FV methods are implemented in many public codes.
Athena  VAC

 AstroBEAR BATS-R-US
 RAMSES FLASH
 PLUTO  HARM
 Enzo  Cosmos++
 Einstein Toolkit

This lecture will focus on Athena

Finite Volume Methods



Uses cell-centered mass, momentum, energy and face-centered fields where cell-
centered values are averaged over the volume:

and face centered values are averaged over areas, e.g.; 

Also requires face-centered fluxes, and edge-centered EMFs.

Discretization with FV Methods.



Finite Volume Discretization
Conservations laws for mass, momentum and energy can all be 
written as 

Integrate over the volume of a grid cell, and over a timestep dt, apply 
the divergence theorem to give

(This equation is exact -- no approximations have been made!)



Where, in the previous equations:

are volume-averaged values, while

are area- and time-averaged fluxes.

Importantly, FV discretization preserves volume-integrated 
values of U to machine precision.



Finite-Area discretization of the induction equation.

Integrate the induction equation over each cell face, apply Stokes Law

Again, these equations are exact -- no approximation has been made.



Where, in the induction equation,

are area-averaged components of the magnetic field, and

are line- and time-averaged electro-motive forces (v x B).

Finite-area discretization of induction equation preserves magnetic 
flux (and therefore div(B) constraint) to machine precision.



Uses cell-centered mass, momentum, energy; face-centered field: 

Uses face-centered fluxes, and edge-centered EMFs.

The key is how to compute these fluxes and EMFs all at once!

Discretization with FV Methods.



Godunov’s orginal (first-order) method
• Difference in cell-averaged values at each grid interface define set of Riemann 
problems (evolution of initially discontinuous states).
• Solution of Riemann problems averaged over cell give time-evolution of cell-
averaged values, until waves from one interface crosses the grid and interacts with 
the other, that is for 
• Due to conservation, don’t actually need to solve Riemann problem exactly.  Just 
need to compute state at location of interface to compute fluxes.

Flux given by solution along x=0

Then, solution evolved according to



For pure hydrodynamics of ideal gases, exact/efficient nonlinear
Riemann solvers are possible.

In MHD, nonlinear Riemann solvers are complex because:
1. There are 3 wave families in MHD – 7 characteristics
2. In some circumstances, 2 of the 3 waves can be degenerate 

(e.g. VAlfven = Vslow )

Equations of MHD are not strictly hyperbolic
 (Brio & Wu, Zachary & Colella)

Thus, in practice, MHD Godunov schemes use approximate and/or 
linearized Riemann solvers.

Riemann solvers



Many different approximations are possible:

1.  Roe’s method – keeps all 7 characteristics, but treats each as a 
simple wave.

2.  Harten-Lax-van Leer-Einfeldt (HLLE) method – keeps only 
largest and smallest characteristics, averages intermediate states 
in-between.

3.  HLLC(HLLD) methods – Adds entropy (and Alfven) wave 
back into HLLE method, giving two (four) intermediate states.

Good resolution of all waves
Requires characteristic decomposition in conserved variables
Expensive and difficult to add new physics
Fails for strong rarefactions

Very simple and efficient
Guarantees positivity in 1D
Very diffusive for contact discontinuities

Reasonably simple and efficient
Guarantees positivity in 1D
Better resolution of contact discontinuities



Exact solution        Roe’s approximate solution           HLLE solution

Effect of various approximations on the solution to the Riemann 
problem in hydrodynamics

So which approximation is “best”?  Must explore the use of each.

Use of a Riemann solvers is a benefit, not a weakness, of a Godunov 
method: makes shock capturing more accurate.



Higher-order reconstruction
• Using cell-centered values for left- and right-states to define Riemann problems at 
cell interfaces is first-order and very diffusive.
• Higher-order methods use piecewise linear (MUSCL), piecewise-parabolic 
(PPM), or WENO reconstruction within cells.
• Difference between L/R states is small for smooth flow, large near shocks.  
Riemann solver automatically gives correct dissipation for shocks.  

Piecewise linear reconstruction.



Extensions to multidimensions
Traditionally, multidimensional methods are constructed using 
dimensional (directional) splitting:

1. Solve Ut = Fx 
2. Solve Ut = Gy , with G constructed from result of x-update
3. Solve Ut = Hz , with H constructed from result of y-update

Sometimes these sweeps are symmetrized to make splitting 2nd 
order in time (Strang splitting)

In MHD, must use directionally unsplit schemes to preserve div(B)=0, 
e.g. constrained transport (Evans & Hawley 1988).

In addition, higher than 2nd-order FV schemes require special 
treatment of spatial reconstruction, and conversion between 
conserved and primitive variables.  Most codes are only 2nd-order, 
but 4th-order is becoming popular.



Constrained Transport in multidimensions

• Finite Volume / Godunov 
algorithm gives E-field at 
face centers.

• “CT Algorithm” needs  
E-field at grid cell 
corners.

• Arithmetic averaging: 2D 
plane-parallel flow does 
not reduce to equivalent 
1D problem

• Algorithms which 
reconstruct E-field at 
corner are superior 
Gardiner & Stone 2005
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Time integration via method of lines.
To achieve high-order accuracy in time, multistep strong-stability-preserving (SSP) 
Runge-Kutta integrators can be used, e.g. RK2, RK3, RK4 (Suresh & Huynh).
Let L represent RHS operator of MHD equations.  Write Forward Euler as:

Then, second order RK2 algorithm is:
F [f, t] = f +�tL(f, t)
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Third-order RK3 algorithm is:

Note algorithms are dimensionally unsplit.  All spatial operators added at once.



Boundary conditions
Most grid codes apply boundary conditions by specifying solution in extra rows 
of cells (“ghost” or “guard” zones) at boundary of grid.  This algorithm requires 
2 or 3 rows (for 2nd or 4th order upwind reconstruction respectively)

There are different ways of specifying 
solution in ghost zones for different BCs, e.g.

1. Reflecting
2. Inflow
3. Outflow
4. Periodic 

BCs must be applied after every stage in multi-stage integrators.



Practical time step control
For stability, the integration time step is limited by the Courant-
Freidrichs-Lewy (CFL) condition:

Must take minimum timestep over whole grid.
Can be thought of as limiting distance fastest wave travels in one 
time step is less than cell size everywhere on mesh.
Also can be derived more rigorously from formal von Neumann 
stability analysis.
Define Courant number:

For stability C < 1
In multi-dimensions, C < 1/Ndim for most RK integrators.

�t  �x/(v + C)

C =
�t

�x/(v + C)



For MHD, must focus on multidimensional tests.

Convergence rate and ability to capture shocks are 
equally important.

Five test problems we have found very useful (all drawn 
from basic physics of fluids):

1. Linear wave convergence
2. Nonlinear circularly polarized Alfven waves
3. Brio & Wu, and Ryu-Jones shocktubes
4. Field loop advection
5. MHD instabilities (KH, RT, MRI, etc.)

Some Tests

See http://www.astro.princeton.edu/~jstone/athena.html

http://www.astro.princeton.edu/~jstone/athena.html


Linear Wave Convergence: 3D (2N x N x N) grid
Initialize pure eigenmode for each wave family

Measure RMS error in U after propagating one wavelength 
quantitative test of accuracy of scheme



RJ2a Riemann problem rotated to grid

Initial discontinuity inclined to grid at tan-1 q = 1/2
Magnetic field initialized from vector potential to ensure div(B)=0

 Dx = Dy,  512 x 256 grid

Final result plotted 
along horizontal line 
at center of grid

Lx = 2

Ly = 1
UR

UL

Problem is Fig. 2a 
from Ryu & Jones 
1995



RJ2a shocktube in 3D (2N x N x N grid)
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HLLD solver, all 7 MHD waves captured well.



Advection of a field loop (2N x N grid)
Field Loop Advection (b = 106): MUSCL - Hancock integrator

Movies of B2

Arithmetic average   Gardiner & Stone 2005
(Balsara & Spicer 1999)

Good test of proper upwinding of electric fields in CT.

Good test of whether codes preserves div(B) on appropriate stencil: 
Run in 3D with non-zero Vz. Does method keep Bz zero?



Nonlinear regime of KH instability
• Resolved shear layer with tanh profile.  Single more perturbation.
• Explicit viscosity and heat conduction: resolved reference solution
• Good agreement between Athena and Dedalus (spectral code)

Lecoanet+ 2016



Parallelization
Distributed memory parallelization relies on domain decomposition 
using MPI.  Grid is divideded into equally sized blocks, with each 
block assigned to different processors.

Blocks are organized into a quad(oct)-tree in 
2D(3D) using Z-ordering to improve locality.

Ghost cells are communicated 
between blocks using MPI.



Adaptive Mesh Refinement

AMRex
Chombo
PLUTO

Athena++/AthenaK
FLASH
ENZO-E

RAMSES
ART

Patch based Block based Cell based

Blocks can be refined to improve resolution where it is needed.



Quad(oct)-tree in 2D(3D) is especially useful for organizing 
blocks with AMR. 



Communicating ghost cells for cell-centered variables with AMR 
becomes much more complicated.



In addition, flux correction at fine/coarse boundaries is needed 
with AMR to conserve volume integrals of U.  For example (cell-
centered variables):

Additional corrections needed for electric fields (fluxes of face-
centered variables).



Should we expect solutions on an AMR mesh to be identical to those 
on a uniform grid?

Uniform grid solution

MHD KHI with AMR grid solution



Programming for Modern HPC Systems

Frontier (USA)
600k AMD EPYC cores + 
38k AMD Mi250X GPUs

Perlmutter (USA)
200k AMD EPYC cores + 
6k NVidia A100 GPUS

Each of these architectures requires a different programming 
model (C++, HIP, SYCL, CUDA).

Need a single programming model that runs on all 
architectures.

Largest open-science computers adopt a wide variety of designs 

Aurora (USA)
200k Intel Xeon cores +
55k Intel Ponte Vecchio GPUs



Solution: Kokkos (Trott et al. 2021)
• Open source code project at Sandia Nat. Lab. 

https://github.com/kokkos/
• Set of C++ templates and abstractions for data containers 

and parallel execution strategies.
• Depending on build options, code compiles into C++, 

CUDA, OpenMP, OneAPI, etc.
• This results in performance portability.  In principle, a code 

built on top of Kokkos can run efficiently on any architecture.



Performance portability

*Must guarantee inner loops are vectorized.

PLM, RK2, HLLE solver



Excellent weak scaling on GPUs:



Example application: Radiation dominated BH accretion flow

Spin = 0.9, SANE initial conditions, 10 MSun black hole,
initial Prad/Pgas = 103, scattering and absorption opacity
Accretion rate approximately Eddington rate.
Runs cost ~4K GPU hours.  Much bigger/longer runs possible.



Summary
• There are many numerical algorithms for solving the 

compressible MHD equations based on different 
discretizations.

• Finite volume methods based on uniform meshes are popular 
since they are excellent for shock capturing.

• Modern codes must be able to run on today’s heterogeneous 
computing systems, such as GPU accelerators.

• Numerical methods are a powerful tool for exploring 
nonlinear and time dependent MHD.


