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Motivation: the complex structure of
astrophysical plasmas
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Carina nebula, HST image




Start with the equations of compressible viscous and
resistive MH
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Also need an equation of state P=P(p,T). Usually adopt the ideal gas law
P=nkT | or | P = (y-1)e| where for monoatomic gas (H), y=5/3




[Linear Waves

The MHD equations are a set of hyperbolic conservation laws.

An important characteristic of hyperbolic PDEs is they admit wave-like
solutions of the form:

a = ag + 0a = ag + a1 exp(ik - x — iwt)

Where a, = constant and a,/a, << 1. That is, small amplitude perturbations
propagate as waves.

To see this (see also Matt’s and Muni’s notes):

* Substitute this form of solution into MHD equations

* Drop terms nonlinear in oa

Write resulting system of linear equations for perturbations W = da; as
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Each of the eigenvalues and eigenvectors of A correspond to different wave
modes 1n the system, with the eigenvalues given by the characteristic
equation (dispersion relation) equal to the phase velocity.
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Pure hydrodynamics (no magnetic field) modes are:
* sound waves propagating at (v, +/- C,)
* entropy mode propagating at v,

p, P, v in propagating sound wave
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Note: numerical solution computed with grid-based compressible
MHD code (AthenaK). Discuss numerical methods next lecture.



Dispersion relation for MHD waves.

Dispersion relation for MHD waves 1s much more complicated:
w? — (k- va)2]jw* — w?k2(vS + C%) + k2C%(k - v4)Y] =0

B
VAamp
C? = vPy/po is the sound speed

Where v, = 1s the Alfven speed

In MHD there are three wave families (1n addition to the entropy
mode). Note there is only one 1n hydrodynamics!:

1) Alfven wave propagates at V,

2) and 3) Fast and slow magnetosonic waves propagating at Cg;

1
Gho= 3 (12 4]+ o2 + 4P —ac2, )




Phase velocities of MHD waves: Friedrichs diagrams.

Note for in some cases, modes are degenerate. Eigenvalues of
linearized MHD equations are not always linearly independent.
MHD equations are not strictly hyperbolic.



p (blue), B | (green), v | (orange) in
propagating Alfven wave
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p (blue), B | (green), in
propagating slow magnetosonic wave
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p (blue), B | (green), v | (orange) in
propagating fast magnetosonic wave
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[.inear Instabilities

Much of the complexity 1n astrophysical fluids 1s a result of the
nonlinear saturation of MHD i1nstabilities.

We’ll talk about three fundamental fluid instabilities here (there
are many more):

1. Rayleigh-Taylor (RT) instability.

2. Kelvin-Helmholtz (KH) instability.

3. Magneto-rotational instability (MRI)

See monographs by Chandrasekhar 1965
Drazin & Reid 1981



Rayleigh-Taylor (RT) Instability
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Dispersion relation

Consider a heavy fluid (p,) overtop of a light fluid (p,) in a vertical
gravitational field g = -gZ and horizontal magnetic field B.

B

In this system, vertical displacements
oscillate with frequency:

IR A (B
_|_
p1+p2  2m(p1 + p2)

When p, > p, then ®? <0,
exp(-imt) grows with time: instability

1/2
w = =i | |k|g

Growth rate depends on Atwood
number: ARz

O w02
Magnetic fields stabilize short
wavelength modes.




Hydrodynamic evolution of single mode with a
contact discontinuity between fluids

Pseudocolor
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Hydrodynamic evolution of a single mode with a
smooth interface (tanh) between fluids

Pseudocolor
Var: dens
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Hydrodynamic evolution with three wavelengths
across domain, smooth interface

Pseudocolor
Var: dens
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Hydrodynamic evolution with random
perturbations and smooth interface

Pseudocolor
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3D Hydro RTI

256% x 512 grid
Random perturbations

Isosurface and slices of
density

/.



MHD evolution of a single mode with a
smooth interface.

Pseudocolor
Var: dens
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3D MHD RTI

256% x 512 grid
Random perturbations

Isosurface and slices
of density

B=(B,,0,0)
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Magnetic fields cannot suppress all modes of RTI

Field rotated by 45°

Field rotated by 90°
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Simple scaling arguments can be applied to growth of
bubbles in nonlinear regime

Expect height of the
bubbles: h ~ gt?

MHD = |
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Bubbles rise faster in MHD!

Expect energy released ~ h? ~ t

B2/BE, V2/B2

T T T
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Largest MHD simulation to date, 51203 grid, 150M cpu hours,

400TB of data (courtesy Chuanfe1 Dong, BU).
Study turbulence and dynamo in RTT.




Kelvin-Helmholtz (KH) Instability

Jupiter’s
Great Red
Spot



Dispersion relation

Consider two fluids (p, and p,) in relative (shear) motion, with a
horizontal magnetic field B.

In this system, vertical displacements
oscillate with frequency:

S (k- B)?
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p = 2p1p2/(p1 + p2)

B L _RUDp
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When U > 0 then ® 1s complex,
imaginary part gives growth with time:
instability

Magnetic fields stabilize short
wavelength modes.



Hydrodynamic evolution of a passive scalar in
two fluids with the same density

Pseudocolor
Var: s_00
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Hydrodynamic evolution of a passive scalar in
two fluids with different densities

Pseudocolor
Var: s_00
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With no viscosity, ever smaller structures with ever higher resolution.
No convergence.

128x256 256x512 ‘ 512x1024



Convergence requires explicit dissipation

o6 LAB192 piose —  Add explicit viscosity and heat
conduction. Then all codes converge
to same reference solution.

" Athena++ reproduces spectral code
results at 2x resolution and 1/2 the cost.
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Nonlinear evolution of KHI in 2D MHD

Passive scalar B,



Structure of KH rolls in 3D MHD




Magneto-rotational Instability (MRI)
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Important for angular momentum transport in accretion disks.



Growth Rate w/Q

Dispersion relation

Different lines are different kg
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Growth rate now
peaks at specific k.

Analytic linear
dispersion relation
1s a good code test.



Saturation of the MRI has been studying in a small, local
patch of a disk using the shearing box.

Solve equations in a frame co-rotating with flow at Keplerian frequency.
Requires special source terms for non-inertial frame, and special BCs 1n radius.



Nonlinear evolution of MRI 1n 2D

Net vertical flux No-net vertical flux

Images of 8V =V, - Vieperian



Net vertical flux in 2D: channel modes

Why do axisymmetric simulations with net flux blow-up?

* Axisymmetric modes of MRI are exact solutions to nonlinear MHD equations
in local shearing box (Goodman & Xu 1994).

* Thus, these modes grow exponentially without bound, until parasitic
instabilities (KH, reconnection) disrupt them.

This does not happen in no-net flux case since
varying field strength excites a range of
unstable modes.
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Schematic evolution of channel modes
(Hawley & Balbus 1992)
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No-net vertical flux in 2D: no convergence

Images of 5V =V - VKeplerlan
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Without explicit dissipation, no-net-flux evolves into turbulence on
ever smaller scales.



Nonlinear evolution of MRI 1n 3D with explicit dissipation

Converged solutions are obtained if both resistivity and viscosity
are specified. Important dimensionless parameter is magnetic

Prandtl number Pm = v/1.

density
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Re = 85000, Rm = 2600, Pm = 0.03, 800x1600x800 mesh.
(Meheut et al. 2015)



Pm dependence of angular momentum transport in

MRI turbulence
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Summary

One basic property of fluids is that they support linear (and in
some cases nonlinear) propagating waves.

For some equilibrium states, amplitude of linear waves grow
exponentially in time, leading to instability.

Numerical methods are important for studying the nonlinear
regime of MHD 1nstabilities.

Generally, RTI, KHI, and MRI saturate as MHD turbulence
in 3D. Explicit dissipation can be important in setting
saturation amplitudes.



