Introduction to high-energy plasma astrophysics

 $z/R_{\rm LC}$

Sasha Philippov (University of Maryland, College Park), June 2, 2023

1000 500 -500-1000

 z/d_e

- Introduction to radiative processes and radiative relativistic reconnection.
- Examples of astrophysical systems.
 - Neutron stars: pulsars (mainly), a bit on magnetars
 - Black holes

Lecture Plan

What are the interesting physical effects to look out for?

Inverse Compton & synchrotron cooling

What are the interesting physical effects to look out for?

- Inverse Compton & synchrotron cooling
- Compton scattering (incl. down-scattering)

when scatterings are too frequent: $T_{\rm ph} \leftrightarrow T_{e^\pm}$

What are the interesting physical effects to look out for?

- Inverse Compton & synchrotron cooling
- Compton scattering (incl. down-scattering)
- Two-photon pair-production/-annihilation

allowed when $\epsilon_1 \epsilon_2 (1 - \cos\theta) \ge (2m_e c^2)^2$

when important, can be an abundant source of ~MeV photons

What are the interesting physical effects to look out for?

- Inverse Compton & synchrotron cooling lacksquare
- Compton scattering (incl. down-scattering) \bullet
- Two-photon pair-production/-annihilation \bullet
- Synchrotron absorption \bullet

becomes important at (typically) low frequencies:

$$\sigma(\omega) \approx 467 \frac{1}{137 \, \alpha_F} \cdot \sigma_F$$

when important, may introduce effective electron/positron collisionality (for the low-energy particles)

-5/3 $m_e c^2 (\gamma \omega)$ $_{T}\hbar\omega_{B}$

What are the interesting physical effects to look out for?

- Inverse Compton & synchrotron cooling
- Compton scattering (incl. down-scattering)
- Two-photon pair-production/-annihilation
- Synchrotron absorption
- Near-Schwinger field effects ($B_S \approx 10^{13}$ G)
 - $\gamma + B \rightarrow e^- + e^+$ (pair-production)
 - $\gamma + B \rightarrow \gamma + \gamma + B$ (photon splitting)
 - Modified pair-production/-annihilation channels
 - Higher-order effects + resonances

For a detailed overview see *Thompson, & Kostenko (2018-2020)*

What are the interesting physical effects to look out for?

- Inverse Compton & synchrotron cooling \bullet
- Compton scattering (incl. down-scattering)
- Two-photon pair-production/-annihilation \bullet
- Synchrotron absorption \bullet
- Near-Schwinger field effects ($B_S \approx 10^{13}$ G)
 - $\gamma + B \rightarrow e^- + e^+$ (pair-production)
 - $\gamma + B \rightarrow \gamma + \gamma + B$ (photon splitting)
 - Modified pair-production/-annihilation channels
 - Higher-order effects + resonances
- Multi-body channels (typically less important, since $\sigma \propto \alpha_F, \alpha_F^2, \alpha_F^4$) ullet
 - $\gamma + e^{\pm} \rightarrow \gamma + e^{\pm} + \gamma$ (double Compton scattering)
 - $e^- + e^+ \rightarrow \gamma + \gamma + \gamma$ (three photon annihilation)
 - $\gamma + e^{\pm} \rightarrow e^{\pm} + e^{+} + e^{-}$
 - $e^{\pm} + e^{\pm} \to e^{\pm} + e^{\pm} + e^{+} + e^{-}$

- For neutrinos from AGN, need hadronic processes
 - p-p, produces protons and pions
 - photo-meson

$$p + p \rightarrow p + p + \pi^{+} + \pi^{-} + \dots$$

$$p + \gamma \rightarrow p + a\pi^{0} + b(\pi^{+} + \pi^{-})$$

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$

$$\mu^{+} \rightarrow e^{+} + \bar{\nu}_{\mu} + \nu_{e}$$

In proton rest frame, $E'_{\gamma} \approx 2\gamma_p E_{\gamma} \approx 150 \mathrm{MeV}$

For a detailed overview see Svensson (1984, 1987)

Dimensionless parametrization

Dimensionless parametrization

determines how relativistic the plasma becomes when energized by the *B*-field dissipation

Dimensionless parametrization

magnetization parameter $\sigma = \frac{B^2/4\pi}{n_e m_e c^2}$ •

compactness parameter $l = \frac{2U\sigma_T s}{m_e c^2}$

• cooling timescale:
$$t_{\rm cool} \approx \frac{s/c}{\gamma l}$$

determines how fast the energy is radiated away (compared to the system light crossing time s/c)

radiated power:
$$P = \frac{4}{3} \sigma_T \langle \gamma^2 \rangle n_e Uc$$

can be U_s if cooling is dominated by IC scattering, or U_B if synchrotron

Dimensionless parametrization

magnetization parameter $\sigma = \frac{B^2/4\pi}{n_e m_e c^2}$

compactness parameter $l = \frac{2U\sigma_T s}{m_e c^2}$ (cooling time

- burn-off limit / critical energy ullet
 - acceleration timescale, $t_{\rm acc} \approx \frac{\gamma}{\beta_{\rm rec}} \omega_B^{-1}$, comparable to $t_{\rm cool}$

$$\gamma_{\rm rad} = \left(\frac{4\pi\beta_{\rm rec}e}{\sigma_T B}\right)^{1/2} - \frac{1}{2} \text{ for synchrotron cooling: } \gamma_{\rm rad} \approx 10^5 \left(\frac{B}{10^5 \,\rm G}\right)^{-1/2}$$

light-crossing timescale, s/c, comparable to $t_{cool} \Longrightarrow \gamma_{cr} \approx 1/l$ •

escale:
$$t_{\rm cool} \approx \frac{s/c}{\gamma l}$$
)

for inverse Compton cooling ($t_c^{-1} = \sigma_T n_e c$ – collision frequency, n_s , ε_s – number density and energy of the soft photons)

Dimensionless parametrization

magnetization parameter $\sigma = \frac{B^2/4\pi}{n_e m_e c^2}$

compactness parameter $l = \frac{2U\sigma_T s}{m_c c^2}$ (cooling time

- QED optical depth + "pair-production potential" \bullet

 - two-photon pair-production optical depth, $\tau_{\gamma\gamma} = \sigma_T s n_{\varepsilon > MeV}$

escale:
$$t_{\rm cool} \approx \frac{s/c}{\gamma l}$$
)

Thompson optical depth, $\tau_T = \sigma_T s n_e$ (collision frequency: $t_c^{-1} = \sigma_T n_e c$): number of collisions for a photon $\approx \max(\tau_T, \tau_T^2/2)$

Relativistic reconnection (high- σ , e^{\pm} plasma)

Sironi (PRL, 2022)

Radiative effects

Inverse-Compton cooling

- Postulate a (unmodeled) low-energy soft photon background with energy density, U_s ۲
- Particles "feel" a drag force: $F_{\rm IC} \propto (\gamma/\gamma_{\rm rad})^2$ •
- Varying $\gamma_{\rm rad} / \sigma$ (cooling strength) •

Results:

- particles are unable to accelerate past γ_{rad}
- power-law steepens at $\gamma_{\rm br} \sim \sigma$ for slow cooling ($\gamma_{\rm rad} \geq 8\sigma$)

Werner+ (2019)

Radiative effects

Inverse-Compton cooling

Sridhar+ (2021)

- 1)

 $dN_{\pm}/d\log(\gamma$

Sironi, & Beloborodov (2020)

Results:

- for strong cooling bulk motions constitute most of the plasma kinetic energy
- $\Theta_{e^{\pm}} \leq \Gamma_{\text{bulk}} \Longrightarrow$ has a direct imprint on the comptonized emission

of the plasma kinetic energy omptonized emission

Results:

- even for strong cooling ($\gamma_{rad} \leq \sigma$) particle distribution is (almost) unchanged ($p \sim 1...2$) and extends to $\gamma_{cut} \sim \sigma$
- acceleration & cooling happens at different locations in space
- for $\gamma_{\rm rad} \leq \sigma$ emission peaks at $\varepsilon_p \sim \hbar \omega_B \gamma_{\rm rad}^2$ (≈ 16 MeV!) with a cutoff near $\varepsilon_c \sim \varepsilon_p (\sigma/\gamma_{\rm rad})$ lacksquare
- \bullet

Chernoglazov+ (arxiv, 2023)

internal temperatures of plasmoids is dropped to $\approx \gamma_{rad}$ (hence the emission peak) \implies thinner current sheets for stronger cooling

Radiative effects Synchrotron cooling

Results:

- even for strong cooling ($\gamma_{rad} \leq \sigma$) particle distribution is (almost) unchanged ($p \sim 1...2$) and extends to $\gamma_{cut} \sim \sigma$
- acceleration & cooling happens at different locations in space
- for $\gamma_{\rm rad} \leq \sigma$ emission peaks at $\varepsilon_p \sim \hbar \omega_B \gamma_{\rm rad}^2$ (≈ 16 MeV!) with a cutoff near $\varepsilon_c \sim \varepsilon_p (\sigma/\gamma_{\rm rad})$ lacksquare
- \bullet

Chernoglazov+ (arxiv, 2023)

internal temperatures of plasmoids is dropped to $\approx \gamma_{rad}$ (hence the emission peak) \implies thinner current sheets for stronger cooling

QED effects

Two-photon pair-production

- strong sync. cooling & $\gamma \gamma \rightarrow e^{\pm}$ pair production (Breit-Wheeler)
- photons are emitted, and their interaction is modeled as two-body collisions
- $\tau_{\gamma\gamma} \ll 1$ (most of the photons escape) •

Results:

- magnetization σ is self-consistently regulated by pair-production feedback
- produced pairs constitute a separate emission peak (at low energies)

 $\geq 10^{8}$

magnetization (_o)

1...10

see Uzdensky, & Goodman (2008), Belobrodov (2017), Sironi, & Beloborodov (2020), Sridhar+ (2021, 2023), Groselj+ (2023)

+ polarization measurements by IXPE

 $\gamma_{\rm rad} \gg \sigma$ (weak cooling), but $l_B \gg 1$ (large compactness)

Cen A jet, *EHT (2021)*

see Giannios, & Uzdensky (2019), Petropoulou+ (2019), Christie+ (2019), Davelaar+ (2020), Sironi+ (2020), Davelaar+ (in prep.)

M87* polarized jet, ALMA (2021)

- stripes or reconnection-mediated KHI ullet
- reconnection-mediated kink-instability ۲

magnetization (_o)

 10^{3}

magnetization (_o)

see Porth+ (2021), Uzdensky (DPP talk), Aimar+ (2023),

γ-ray emission efficiency, *Fermi (2013)*

see Philippov+ (2014-2018), Chen+ (2014), *Cerutti+ (2016), HH+ (2019, 2023)*

 $\geq 10^{8}$

- pair-supply dominated by $\gamma\gamma \to e^{\pm}$, even though $\tau_{\gamma\gamma} \ll 1$ •
- $\sigma \sim 10^6$, $\gamma_{\rm rad} \leq \sigma$ (strong synchrotron cooling)
- Crab peaks around \leq MeV, Vela peaks around GeV
- TeV emission observed

Young PSR current sheets

 10^{6}

magnetization (_o)

- high-luminosity TeV (+X-ray) flares •
- $\sigma \geq 10^7$, $\gamma_{\rm rad} \leq \sigma$, peaks around 16 MeV •
- jet base content is dominated by e^{\pm} -production •
- periodicity is controlled by flux build-up/"eruption"

new data coming soon!

1...10

Thomson optical depth

 \gg

 ~ 1

≪ 1

see Ripperda+ (2022), Hakobyan+ (2023); also gap discharge models: Levinson+ (2011, 2018), Chen+ (2018, 2020), Crinquand+ (2020)

H.E.S.S. + MAGIC + Veritas: Abramowski+ (2012)

magnetization (_o)

see Thompson (2008, 2020), Beloborodov (2013, 2021), Yuan+ (2020, 2022), Mahlmann+ (2022, 2023)

 10^{3}

We have now reached a point where we can simulate ulletradiative/QED effects in reconnection (and not only) ab-initio (Tristan v2, Zeltron, OSIRIS)

 $\gg 1$

magnetization (σ)

Unipolar induction

stal neutron the of one rotation during variation tensity ln

P ~ 150 ms P ~ 33 ms

• corotation electric field: $E + \frac{\Omega \times r}{C} \times B = 0;$

- poynting flux: $E \times B$;
- electromagnetic energy losses
 - $B \sim 10^{12} \,\mathrm{G}, \ B^2/4\pi \gg \rho c^2$

Radiation:

- Electric field in the gap accelerates particles , which emit high-energy curvature photons.
- Synchrotron and resonant inverse-Compton photons are emitted by secondary pairs.

Pair production:

- Pairs are produced by all these photons. $\chi_a = \frac{1}{2} \frac{\epsilon_{\gamma}}{m_e c^2} \frac{B}{B_q} \sin \psi \sim \frac{1}{10} \text{ when } \tau(\chi_a) = 1.$
- Photon splitting, $\gamma > \gamma + \gamma$, is only important in magnetars. The only pair source for $B \ge 4B_Q$ is the resonant scattering, which is very efficient for $\gamma \sim 10^3$.

neutron star

Theoretical cartoon: GJ model

• corotation electric field: $E + \frac{\Omega \times r}{c} \times B = 0;$

- sweepback of B-field due to poloidal current;
- poynting flux: $E \times B$;
- electromagnetic energy losses.

 $\sigma = B^2/(4\pi\rho c^2) \gg 1$

 $\rho_{\rm GJ} = -\frac{\boldsymbol{\Omega} \cdot \boldsymbol{B}}{2\pi c}$

Goldreich & Julian (1969)

Standard pulsar

Force-free paradigm:

$$j = \frac{c}{4\pi} \nabla \cdot E \frac{E \times B}{B^2} + \frac{c}{4\pi} \frac{(B \cdot \nabla \times B - E \cdot \nabla \times E)}{B^2}$$
$$+ \frac{1}{c} \frac{\partial E}{\partial t} = \nabla \times B - \frac{4\pi}{c} j, \quad \frac{1}{c} \frac{\partial B}{\partial t} = -\nabla \times E$$

- Y-point;
- closed/open field lines;
- current sheet;
- field lines are asymptotically radial;
- predicts the spindown law:

$$L_{\rm psr} = k_1 \frac{\mu^2 \Omega^4}{c^3} \left(1 + k_2 \sin^2 \alpha\right)$$

Contopoulos+ (1999), Spitkovsky (2006), Kalapotharakos (2009), Petri (2012), Tchekhovskoy+ (2014) (MHD)

Plasma Physics on a computer: (GR)(R)PIC

(R) = radiation reaction force, photon emission, multiple pair production mechanisms

3D aligned rotator

slice along j

- Non-stationary discharge powers coherent radio emission
- Relativistic magnetic reconnection in the current sheet powers high-energy emission
- Current sheet is unstable to plasmoid (tearing) and drift-kink instabilities

Hakobyan et. al., 2023, ApJ

(GR) Oblique rotator with pair production

Philippov, Spitkovsky (2018)

- Non-stationary discharge powers coherent radio emission
- Relativistic magnetic reconnection in the current sheet powers high-energy emission
- Current sheet is unstable to plasmoid (tearing) and drift-kink instabilities

Gamma-ray modeling

Simulations prefer current sheet as a particle accelerator. Particles radiate synchrotron emission.

Observe caustic emission.

Predict gamma-ray efficiencies 1-20% depending on the inclination angle and pair production efficiency in the sheet. Higher inclinations are less dissipative.

Cerutti, Philippov, Spitkovsky (2016); Philippov, Spitkovsky (2018)

i=30 - Phase=0.00 - Positrons -

Polar radio emission

Beam width is related to the polar cap size.

Local simulation of 2D discharge

Clearly a broad-band mechanism. Power cascades to a maximum plasma frequency in the cloud.

Philippov, Timokhin, Spitkovsky (2020) PRL Tolman, Philippov, Timokhin (2022) ApJL

 $\nu \simeq \sqrt{4\pi e^2 \kappa n_{\rm GJ}} / \langle \gamma^3 \rangle m_e^3 / 2\pi = 26 \sqrt{\kappa_5 B_{12}} / r^3 P_{0.1} \gamma_{10}^3 \text{ GHz}$

Confirmation with different codes

Cruz et. al., (2021) ApJL

Confirms order-of-magnitude luminosity Core-cone geometry of the emission beam

QED-PIC simulations with Osiris

Magnetar bursts

X-rays come from reconnection, FRB either from plasmoid mergers or synchrotron maser when the bubble shocks

3D

2D

Yuan et. al., 2020, ApJL

Potentially applicable to X-ray and FRB from galactic magnetar

Yuan et. al. (including Philippov), 2022, ApJ

B ~ 10G $n_e \sim 3 \cdot 10^4 \mathrm{cm}^{-3}$ $T_{\rho} \sim 1 \mathrm{MeV}$

SgrA* and M87(*)

conditions imply macroscopically collisionless, but strongly magnetized plasma

large-scale jet is observed for M87

Multi-wavelength flares (NIR/X-ray for SgrA*, TeV for M87)

SgrA* and M87(*)

Theoretical cartoon: Plasmas around black holes

Blandford, Znajek, 1977

* jet composition ...

First GR kinetic simulation of jet launching

Parfrey, Philippov, Cerutti, cover of PRL, 2019

Penrose-like process of energy extraction in the current sheet

analytics by Comisso, Asenjo, PRD, 2021

Anti-matter production: QED lightning near the EH

$n/n_{GJ}, t/(m/c) = 90.99$

Solves the problem of plasma creation in jets. Intrinsic discharge intermittency is probably not sufficient to explain large TeV flares from M87. Three-dimensional GR PIC simulations are still challenging....

Crinquand, Cerutti, Philippov, et. al., PRL, 2020

Large Flares: Magnetic Reconnection near the EH

Regime of radiative reconnection

Ripperda et. al. (2022) Bransgrove, Ripperda, Philippov (2021)

<u> $B \sim 10^2 \,\mathrm{G}, B^2/4\pi \gg \rho c^2, \sigma \sim 10^7$ </u>

Inverse Compton radiation:

• $t_{\rm acc} \ll t_{\rm IC} \ll L/c \Rightarrow$ moderate IC drag compared to acceleration, but important on dynamical timescales

Synchrotron cooling:

• $t_{acc} \sim t_{sync} \Rightarrow$ synchrotron cooling affects particle acceleration

Pair production:

- plasma density is dominated by e^{\pm} pairs
- $\tau_{\gamma\gamma} \ll 1$, annihilation ($\gamma\gamma \leftrightarrow e^{\pm}$) is not important (but important in X-ray binaries)

Hakobyan et. al., 2023, ApJL

Brightness dips in EHT imaging

ngEHT can test this picture if observations can sample both the quiescence and flare; AND if observed signatures are different (prediction: dimming of the radio image).

M87@230 GHz; *t* = 8737*r*_g/*c*

He et. al., arXiv, 2023 Movie by Koushik Chatterjee