
NSF/GPAP Summer School 2023 Selection of HW Problems

Note: There is much more here than you could possibly do in a week or a month or perhaps
even a year, no matter your background. But you can take these problems with you and
learn from them over time. To guide you, each problem is given a ski-slope rating according
to its intended difficulty: , , , .

Hydrodynamics

1. Shrinking sink streams. Go to the bathroom and turn on the sink slowly to get
a nice, laminar stream flowing down from the faucet. Go on, I’ll wait. If you followed
instructions, then you’ll see that the stream becomes more narrow as it descends. Knowing
that the density of water is very nearly constant, use the continuity equation to show that
the cross-sectional area of the stream A(z) as a function of distance from the faucet z is

A(z) =
A0√

1 + 2gz/v20
,

where A0 is the cross-sectional area of the stream upon exiting the faucet with velocity v0
and g is the gravitational acceleration. If you turn the faucet to make the water flow faster,
what happens to the tapering of the stream?

2. Self-gravity is stressful. Use Poisson’s equation, ∇2Φ = 4πGρ, to show that the
gravitational force on a self-gravitating fluid element may be written as

−ρ∇Φ = −∇·
(
gg

4πG
− g2

8πG
I
)
,

where g = −∇Φ, g2 = g · g, I is the unit dyadic, and G is Newton’s gravitational constant.
The quantity inside the divergence operator is known as the gravitational stress tensor.
Written in the form of a divergence, the gravitational force represents the flux of total
momentum through a surface due to gravitational forces.

3. Straining in cylindricals. Show that the Rϕ-component in cylindrical coordinates
of the rate-of-strain tensor

Wij
.
=
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

is given by

WRϕ =
1

R

∂uR
∂ϕ

+R
∂

∂R

uϕ
R
.

(Hint: ∂ui/∂xj = [(êj ·∇)u] · êi is coordinate invariant.) Such a combination often shows
up in the theory of angular-momentum transport in accretion discs.

4. Helicity conservation. Given the vorticity ω .
=∇×u, the helicity of a region of fluid

is defined to be H .
=
∫

dV ω ·u, where the integral is taken over the volume of that region.
Assume that the circulation Γ = const and that ω · n̂ vanishes over the surface bounding V ,



where n̂ is the unit normal to that surface. Prove that the helicity H is conserved in a frame
moving with the fluid, viz. DH/Dt = 0. Note that the fluid need not be incompressible for
this property to hold.

5. Spiral density waves and inertial waves. Section VI.4 of Kunz’s lecture notes
contains a linear analysis of an unmagnetized, adiabatic, self-gravitating fluid. With P and
ρ being the background thermal pressure and mass density (both taken to be uniform), the
dispersion relation governing small-amplitude perturbations was ω2− k2a2 + 4πGρ = 0 with
a2

.
= γP/ρ. Solutions were “Jeans unstable” for k2a2 < 4πGρ. This problem has you repeat

this linear analysis, but in cylindrical coordinates (R,ϕ, z) for a differentially rotating disk
with angular frequency Ω = Ω(R)ẑ. Your starting point will be §II.5 of Kunz’s lecture notes,
where you will find the hydrodynamic equations written in a rotating frame. In what follows,
take the background pressure to be barotropic and allow the background ρ = ρ(R, z).

(a) Take the perturbations to have space-time dependence exp(−iωt+ imϕ+ ikRR + ikzz)
with kRLR ∼ kRR � 1 and kzLz � 1, where LR (Lz) is the characteristic disk
lengthscale in the radial (vertical) direction. (This is a WKB approximation: the per-
turbations are assumed to vary on lengthscales much shorter than those characterizing
the background.) Obtain the following dispersion relation in the “tightly wound” limit
in which both kR and kz � m/R :

ω4 − ω2
(
κ2 + k2a2 − 4πGρ

)
+ κ2

k2z
k2
(
k2a2 − 4πGρ

)
= 0,

where ω .
= ω−mΩ is a Doppler-shifted frequency, κ2 = 4Ω2 + dΩ2/d lnR is the square

of the epicyclic frequency, and k2 = k2R + k2z . Another way to write this result is

ω2 − k2a2 + 4πGρ =
κ2k2Ra

2

ω2 − κ2

(
1− 4πGρ

k2a2

)
,

which has the usual Jeans dispersion relation on the left-hand side (but for ω2 → ω2)
and has a right-hand side that includes effects associated with the differential rotation.

(b) Consider the case kz = 0. The result is the dispersion relation for spiral density waves:

ω2 = κ2 + k2a2 − 4πGρ.

Such waves are thought to be particularly important in theories of galactic structure
and protostellar disks. Note that rotation is a stabilizing influence (as is differential
rotation if κ2 > 0, the usual situation in astrophysical disks). Physically, why?

(c) Now take kza� κ and (4πGρ)1/2 to obtain the dispersion relation for inertial waves:

ω2 =
k2z
k2
κ2.

These waves are essentially incompressible, and are the only fluctuations in a polytropic,
non-self-gravitating disk with frequencies less than κ. Note the dependence on kz, which
in concert with their incompressible nature tells us that the fluid displacements in this
wave are primarily in the disk plane. With that in mind, what force is responsible for
this wave?



(d) Repeat the calculation in part (a) but without adopting the WKB approximation.
Namely, take the perturbations to have the form f(R, z) exp(−iωt + imϕ) and obtain
the following linear wave equation for the potential δh .

= δP/ρ+ δΦ :[
1
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D
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)]
δh = −δρ,

where D .
= κ2−ω2 and δΦ is the solution to the linearized Poisson’s equation. Note the

resonances at D = 0 and ω = 0, which are referred to as the Lindblad and corotation
resonances, respectively. Near these resonances, the waves couple strongly to the disk.
(The WKB treatment formally breaks down at the Lindblad resonance, at which kR
must vanish.) These resonances are important in the study of tidally driven waves
and planetary migration. For more on this topic, see Goldreich & Tremaine (1979,
Astrophys. J. 233, 857) and Balbus (2003, Annu. Rev. Astron. Astrophys. 41, 555).

Magnetohydrodynamics: Waves

6. A mechanical Alfvén wave. Suppose we have a perfectly conducting rectangular
loop of height h and part of its width x immersed in a uniform magnetic field B = Bẑ
oriented out of the page. The loop has a mass m and inductance L. Ignore gravity.

(a) Give the loop an initial velocity v = v0x̂ to the right, so that the flux through the loop
increases in time. What happens? Describe the motion in words.

(b) Solve for the motion analytically.

(c) Now suppose that the loop has some resistance R. How big should R be before resis-
tance plays an appreciable role in the motion?

7. Transport of energy by an Alfvén wave. A circularly polarized Alfvén wave of
amplitude δB⊥ propagates along an otherwise uniform magnetic field B0ẑ:

B = B0ẑ + δB⊥ e⊥(t, z) and u = − δB⊥√
4πρ

e⊥(t, z), (1)

where
e⊥(t, z) = cos[k(vAt− z)]x̂+ sin[k(vAt− z)]ŷ.

(a) Draw the magnetic-field line at t = 0. Which way is the wave propagating?

(b) Prove that the magnetic-field strength B is a constant, despite the presence of the wave.

(c) Show that (1) is an exact nonlinear solution of the ideal-MHD equations.

(d) Calculate the time-averaged Poynting flux 〈S〉t
.
= 〈cE×B/4π〉t for this wave. Write it

in terms of the total wave energy E = ρu2/2+δB2
⊥/8π. Interpret your result physically.



Magnetohydrodynamics: Conservation laws

8. Kelvin’s circulation theorem in MHD. In §II.4 of Kunz’s lecture notes, Kelvin’s
circulation theorem was proven for the case without a magnetic field. Here you will generalize
it for MHD. First, a reminder of the hydrodynamic case:

DΓ

Dt
.
=

D

Dt

∫
∂S
u · d` =

D

Dt

∫
S
ω · dS =

∮
∂S

(
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ρ
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∮
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ρ
,

where ω .
=∇×u is the vorticity. For a barotropic fluid, Γ = const in the frame of the flow.

(a) Use the MHD force equation to show that Kelvin’s circulation theorem in MHD becomes

DΓ

Dt
=

∮
∂S

(
−dP

ρ
+
j×B
cρ

)
· d`,

where j = (c/4π)∇×B.

(b) Explain how the Lorentz force could generate circulation. (Hint: Take an irrotational
fluid and thread it with a twisted magnetic field. Let it go. What would happen?)
Would it help or hurt vorticity conservation if the magnetic field weren’t perfectly
frozen into the plasma? Why?

9. Lundquist’s theorem. The concept of flux freezing is usually introduced by way of
Alfvén’s theorem: the magnetic flux passing through a surface moving along with the fluid
is conserved. There is an alternative description of flux freezing stated in terms of line tying:
fluid elements that lie on a field line initially will remain on that field line (S. Lundquist,
Phys. Rev. 83, 2 (1951)). Starting from the ideal induction equation, ∂B/∂t =∇×(u×B),
use the continuity equation to show that

D

Dt

B

ρ
=
B

ρ
·∇u,

where D/Dt = ∂/∂t+u ·∇. By comparing this equation to that describing the evolution of
an infinitesimal Lagrangian separation vector between two points in a moving fluid, argue
that the magnetic field moves with the flow.

Magnetohydrodynamics: Instabilities

10. Magnetorotational instability with springs. The acknowledgement at the end of
Balbus & Hawley (1992a) reads, “It is fitting and proper to acknowledge Alar Toomre for this
important insight that the Hill equations had something to contribute to the MHD stability
problem.” This insight is what led Balbus and Hawley to develop the now-famous spring
model of the MRI, which was then used to conjecture that the Oort A-value is the universal
growth rate limit for accretion-disk shear instabilities. The Hill equations describe local disk
dynamics in a rotating frame – local in that they describe small excursions x .

= R−R0 and
y
.
= R0(ϕ− Ω0t) from a circular orbit R = R0, ϕ = Ω0t. They are given by:

ẍ− 2Ω0ẏ = −4A0Ω0x+ fx, (2a)
ÿ + 2Ω0ẋ = fy, (2b)



where the overdot indicates a time derivative and fx and fy represent local forces in the x
and y directions. The Oort A-value A0 = −(3/4)Ω0 for Keplerian rotation.1

The MRI analogy goes as follows. Consider the local force to be nondissipative and to act
by restoring a displacement back to its equilibrium position. The leading-order contribution
to fx and fy in a Taylor expansion about (R0,Ω0t) is linear; for an isotropic force, we have
fx = −Kx and fy = −Ky, where K > 0 is some constant. (You could also profitably think
of this force as being due to an ideal spring with spring constant K.) Then (2) becomes

ẍ− 2Ω0ẏ = −4A0Ω0x−Kx, (3a)
ÿ + 2Ω0ẋ = −Ky. (3b)

Visually,

Now then. . .

(a) For small displacements x, y, show that the solutions to (3) are ∝ exp(±iωt) with

ω4 − ω2
(
κ2 + 2K

)
+K

(
K + 4A0Ω0

)
= 0, (4)

where κ2 .
= 4Ω2

0(1 + A0/Ω0) is the square of the epicyclic frequency, which is positive
for Keplerian rotation. Equation (4) should look familiar from the lecture notes on
MHD instabilities: set K = 0 and you get trivial displacements (ω2 = 0) and epicycles
(ω2 = κ2); replaceK with (k ·vA)2 and you get the axisymmetric MRI linear dispersion
relation. Show that A0 < 0 is a necessary (but not sufficient) condition for instability.

(b) S. A. Balbus and J. F. Hawley, Astrophys. J. 392, 662 (1992) conjecture “that the Oort
A-value is an upper bound to the growth rate of any instability feeding upon the free
energy of differential rotation.” En route, they show that the maximum growth rate
of the MRI is the Oort-A value, that it occurs at Kmax/Ω

2
0 = −(A0/Ω0)(2 + A0/Ω0),

and that the corresponding eigenvector satisfies y/x = −1, i.e., radial and azimuthal
displacements are equal in size. Prove these three facts.

(c) Use these to show that, at maximum growth, the Lagrangian change in the rotation
frequency of a displaced fluid element is ∆Ω = ẏ/R0 = −|A0|x/R0 and that the corre-
sponding Lagrangian change in its specific angular momentum ` = ΩR2 satisfies

∆`

`0
= 2

x

R0

+
∆Ω

Ω0

= 2

(
1− |A0|

2Ω0

)
x

R0

.

1The notation for differential rotation varies in the accretion-disk literature; here’s a dictionary: 2A0 = −qΩ0 =
(dΩ/d lnR)R=R0 . Often, the “0” subscript is simply dropped for ease of notation.



Then show that outwardly (inwardly) displaced fluid elements always have more (less)
angular momentum that the orbits they are passing through (which is what makes
instability possible). (Hint: what is the difference in ` between two undisturbed orbits
a radial distance x apart, in a disk in which dΩ/d lnR = 2A0 < 0?)

(d) Bonus. Set fx = −Kxx and fy = −Kyy with Kx 6= Ky being positive constants. Com-
pute the new dispersion relation governing the time-evolution of small displacements.
Is the growth rate larger or smaller than the Oort-A value for Kx > Ky? for Kx < Ky?
From this result, find the maximum growth rate γmax and the (hint: asymptotic) values
of Kx and Ky at which γmax is achieved. (It may help to make a quick contour plot
of the growth rate in the Kx–Ky plane using your dispersion relation.) E. Quataert,
W. Dorland, and G. W. Hammett Astrophys. J. 577, 524 (2002) used this as a model
for the magnetorotational instability in a collisionless, magnetized plasma.

Magnetohydrodynamics: Relaxation

11. Wöltjer–Taylor relaxation. In some systems (e.g., the solar corona, experiments in
plasma confinement using a toroidal pinch), the plasma evolves towards a preferred config-
uration known as the “relaxed state”. This state is in a configuration of minimum magnetic
energy, but a minimum energy subject to the constraint that the global magnetic helicity
H0

.
=
∫
V0 d3rA ·B is conserved. (Here, A is the vector potential satisfying B = ∇×A

and V0 is the total volume of the isolated plasma under consideration). Helicity can be
interpreted in a topological sense as the number of linkages of magnetic flux tubes with one
another; you can read about this in pretty much any decent textbook on MHD. Even when
the plasma is not ideal, helicity conservation seems to remain a fairly good approximation.2

(a) Show that, while A ·B is not gauge invariant, its integral within a flux tube is. (Hint:
recall from undergraduate electromagnetism thatA→ A+∇ψ, where ψ is an arbitrary
scalar function, changes nothing in Maxwell’s equations.) State under what conditions
H0 is gauge invariant.

(b) Show that H0 is a conserved quantity in ideal MHD (but not in resistive MHD).

(c) Use the variational principle to minimize magnetic energy subject to constant
helicity:

δ

∫
d3r

(
B2 − αA ·B

)
= 0,

where α is the Lagrange multiplier introduced to enforce the constant-helicity con-
straint. Show that this procedure yields ∇×B = αB (and thus ∇2B = −α2B, the
Helmholtz equation), i.e., B is a linear force-free field. What boundary conditions must

2Some history: Wöltjer (1958) showed that there are an infinite number of integral invariants in ideal MHD:
Hi

.
=

∫
Vi

d3rA ·B = const on each and every flux tube Vi in the system. These invariants are related to the well-
known property that the magnetic field is frozen into an ideally conducting plasma. J. B. Taylor (1974) realized that,
in a slightly resistive turbulent plasma contained within a perfectly conducting boundary, the only flux tube to retain
its integrity is that which contains the entire plasma. Then, only H0 will remain invariant. Taylor’s conjecture is
that MHD systems tend to minimize their magnetic energy subject to the constraint that the total magnetic helicity
remains constant.



you impose to obtain this result? You may find it helpful to use flux freezing in the
Lagrangian viewpoint, viz., δB =∇×(ξ×B), where ξ is the Lagrangian displacement
of a fluid element (see §VI.3 of Kunz’s lecture notes).

(d) Consider a relaxed (i.e., linear force-free) field with cylindrical symmetry: ∂/∂ϕ = 0,
∂/∂z = 0. Show that Bz = B0J0(αR) and Bϕ = B0J1(αR), where Jn is the nth Bessel
function and R is the cylindrical radius. This corresponds to a field twisted about a
cylindrical surface (“cylindrical pinch”).
If you’re interested in learning more, consult J. B. Taylor (1986), RvMP, 58, 741.

MHD equilibria

12. Magnetostatic stars. A self-gravitating, non-rotating star contains an axisymmetric
and purely toroidal magnetic field B = B(R, z)ϕ̂, where (R,ϕ, z) are cylindrical polar coor-
dinates. For this configuration, show that the equation of magnetohydrostatic equilibrium
can be written as

0 = −∇Φ− 1

ρ
∇P − B

4πρR
∇(RB), (5)

where Φ is the self-gravitational potential, ρ is the mass density, and P is the gas pressure.
Then take the gas pressure to be barotropic, P = P (ρ), and use equation (5) to show that
the magnetic field must then satisfy

B =
1

R
F (ρR2),

where F is an arbitrary function. (Fun fact: Cowling’s anti-dynamo theorem says that
an axisymmetric magnetic field that vanishes at infinity cannot be maintained by dynamo
action.)

MHD shocks

13. Earth’s bow shock. (Based on a problem from Thorne & Blandford) The Sun leaks
∼10−14 M� yr−1 off its surface in the form of a supersonic, hydromagnetic flow of plasma.
At the radius of the Earth’s orbit (1 au), this “solar wind” is characterized by a bulk velocity
v ∼ 400 km s−1, density n ∼ 10 cm−3, and temperature T ∼ 105 K. It is threaded by an
interplanetary magnetic field, arranged approximately in the shape of a spiral emerging from
the Sun (as predicted by E. Parker), whose strength at 1 au is B ∼ 50 µG.

(a) Balance the momentum flux of the solar wind with the magnetic pressure exerted by
the Earth’s dipolar magnetic field to estimate the radius above the Earth at which the
solar wind passes through a bow shock. (Useful facts: The strength of the Earth’s
magnetic field at the surface is B⊕ ∼ 0.5 G. The radius of the Earth is R⊕ = 6371 km.)



(b) Consider a strong perpendicular shock at which the magnetic field is parallel to the
shock front. Show that the magnetic-field strength will increase by the same ratio as
the density when crossing the shock front. Is there an upper limit to the factor by
which a perpendicular shock can increase the magnetic field?

Turbulence

14. Critical balance. In a rigidly rotating, hydrodynamic, incompressible fluid, the
characteristic linear frequency of waves is ω = ±(k‖/k)Ω, where Ω = Ωẑ is the angular
velocity of the flow and k‖ = kz is component the wavenumber oriented parallel to the
rotation axis. (These are the “inertial waves” seen in Problem 5.) Suppose that such a
fluid is turbulent, with velocity fluctuations satisfying k‖/k⊥ � 1, i.e., the fluctuations are
anisotropic with respect to the rotation axis and elongated in that direction. Assume the
turbulence to be strong and critically balanced. Obtain the resulting perpendicular and
parallel power spectra of the turbulent velocities and the scaling relation linking k‖ and k⊥.
Does the anisotropy of the fluctuations increase or decrease as the cascade goes to smaller
scales? Is the similar to or different than Goldreich–Sridhar turbulence?

Magnetic reconnection

15. 2D magnetic reconnection? Consider a plasma that is rigorously described by the
following resistive-MHDOhm’s law: E+u×B = ηj. Suppose that the velocity and magnetic
fields are two-dimensional, with u = ux(t, x, y)x̂ + uy(t, x, y)ŷ and B = Bx(t, x, y)x̂ +
By(t, x, y)ŷ, respectively. Use Ampère’s law to show that j = jz(t, x, y)ẑ. Then show that
there is a velocity v such that E + v×B = 0. Give an explicit expression for v in terms of
u, j, and B. Does this mean there is no reconnection in two dimensions? If not, why not?

15. Simple solutions for shrinking sheets (and their not-so-simple tearing).
Under certain restrictions, one can use the MHD equations to obtain relatively simple, time-
dependent solutions for a thinning current sheet (CS) and examine their linear stability
to resistive tearing modes. These time-dependent solutions are based on S. Chapman &
P. C. Kendall, Proc. Roy. Soc. London Ser. A, 271, 435 (1963), and were used recently by
N. F. Loureiro and D. A. Uzdensky, Phys. Rev. Lett. 116, 105003 (2016) and E. A. Tolman
et al., J. Plasma Phys. 84, 905840115 (2018) in their studies of the onset of reconnection
in a thinning CS (the same E. A. Tolman who lectured at our summer school). Here’s the
basic idea. . .

(a) First, use that the incompressible MHD equations in two dimensions (x, y) to show
that

∂Ψ

∂t
+ {Φ,Ψ} = 0 and

∂

∂t
∇2Φ + {Φ,∇2Φ} = {Ψ,∇2Ψ}, (6)

where the flux function Ψ defines the magnetic field B = ẑ×∇Ψ, the stream function
Φ defines the flow velocity u = ẑ×∇Φ, and the Poisson bracket

{Φ,Ψ} .= ∂Φ

∂x

∂Ψ

∂y
− ∂Φ

∂y

∂Ψ

∂x
.



.

(b) Consider the following time-dependent stream and flux functions:

Φ(t, x, y) = Λ(t)xy and Ψ(t, x, y) =
B0

2

[
x2

a(t)
− y2

L(t)

]
. (7)

These describe a local incompressible flow that is thinning and lengthening a reversing
magnetic field about an X-point. For these potentials to be solutions of the 2D MHD
equations, what must the CS width a(t) and length L(t) satisfy? Plot iso-contours of
Φ/(Λa2) and Ψ/(B0a) in the (x/a)–(y/a) plane for L/a = 10 and describe what you
see. (You might find it helpful to calculate u and B corresponding to these functions
and plot their vector fields.)

(c) Set Λ(t) = τ−1 with τ = const and solve your equations for a(t) and L(t). (Name the
initial values of the CS thickness and length a0 and L0, respectively.) Briefly describe
in words the evolution of this CS.

(d) Suppose L(t) = L0(1 + t/τ) with τ = const. Obtain the corresponding Λ(t) and a(t).
Briefly describe in words the evolution of this CS.

(e) Let’s adopt the CS model from part (d) and set τ .
= (L0/vA)M−1

A , where MA is the
Alfvén Mach number of the incompressible flow. We now ask how linear tearing modes
grow on top of this time-dependent background and determine which of these linear
modes grows the fastest at any given time in the CS evolution. For that, give the CS
some resistivity η, and assume that the outer solution for the CS provides ∆′(k) ∼
1/ka2. (The “∼” here means that we are dropping factors of order unity.) The number
of tearing-induced magnetic islands with wavenumber k that can fit inside the length
of this CS at any given time is ∼kL .

= N . Because each tearing-mode wavelength k−1
is stretched by the flow in the same way as is L, each tearing mode can be labeled by
its own unique value of N . With this borne in mind, answer the following:

(i) Take the long-time limit t� τ , such that L(t) ∼ L0(t/τ). Write down how ∆′(N)
evolves in time for this CS. Your answer should involve N , L0, a0, and t/τ only.

(ii) Show that, in the FKR regime, the time-dependent growth rate γFKR satisfies

γFKR(t)τ0 ∼ N−2/5M
12/5
A S

−3/5
0

(
t

τ0

)12/5

, (8)

where τ0
.
= (a0L0)

1/2/vA and S0
.
= vA(a0L0)

1/2/η. Thus, the fastest-growing FKR
mode is the N = 1 mode.3

(iii) Use (8) to determine the approximate time at which the N = 1 FKR mode grows
faster than the rate at which the CS thickness is shrinking. (Don’t be too fancy
here – a scaling argument is enough.) Name this time tcr and express it in terms
of τ0, MA, and S0.

3In writing (8), we are implicitly assuming that the secular evolution of the CS does not greatly affect the
instantaneous exponential growth of the tearing modes – only that it changes the instantaneous values of τA, τη, and
∆′a that figure into the usual FKR growth rate. This is a good approximation when γFKR(t)� |ȧ/a| – see Tolman
et al. (2018) if you’re interested in the more rigorous details.



(iv) Determine the approximate time at which this N = 1 mode transitions into the
Coppi regime. Name this time ttr and express it in terms of τ0, MA, and S0.

(v) For what combination of MA and S0 is ttr ∼ tcr? In this situation, the maximally
growing FKRmode enters the Coppi regime just as it begins growing fast enough to
disrupt the evolving CS. Loureiro & Uzdensky argued that, under these conditions,
this time marks the onset of reconnection and the disruption of the CS.4

(vi) Consider a solar flare powered by a reconnecting CS whose L0 ∼ a0 ∼ 104 km and
which evolves according to our crude model here. Typical photospheric values are
vA ∼ 2000 km s−1, MA ∼ 10−3, and S0 ∼ 1013. If you plug these numbers in to
your answer from part (v), you should find that ttr ∼ tcr. Use this to estimate the
time at which reconnection onsets, as well as the aspect ratio of the CS at this
time. The former turns out to be reasonably consistent with the observed pre-flare
energy-buildup times in the solar photosphere. Neat.

Charged particle motion

16. Drift currents.

(a) Write down expressions for the E-cross-B drift vE, the grad-B drift v∇B, the curvature
drift vc, and the polarization drift vpol.

(b) In an ion–electron plasma, which of these drifts have currents associated with them?

(c) Show that the current densities associated with the grad-B and curvature drifts are
equal for a pressure-isotropic plasma in a force-free magnetic field having j×B = 0.
[Answer: j∇B = jc = (cP/B) b̂×∇ lnB.]

17. Drifts in MHD waves.

(a) A small-amplitude linearly polarized Alfvén wave of amplitude B⊥ and wavenumber
k > 0 propagates along a uniform magnetic field B0ẑ through an otherwise stationary,
uniform, ideal-MHD plasma. The magnetic field and fluid velocity are given by

B = B0ẑ +B⊥ sin
[
k(z − vAt)

]
x̂ and u = −vA

B⊥
B0

sin
[
k(z − vAt)

]
x̂,

respectively, where vA
.
= B0/

√
4πρ is the Alfvén speed. Neglecting terms of order B2

⊥
and higher, compute all guiding-center drifts for this wave. Draw them for an electron
on the figure below:

B0

<latexit sha1_base64="Otkw8lvGAshbsE75lQ1vCraifm8="></latexit>

z = 0

<latexit sha1_base64="56OB6Xt5TsI1v9KjyKlLmGvMn/c="></latexit>

B0 + B?

<latexit sha1_base64="6jPCz5zxBXiG7OLRJ9hH5ILO6QU="></latexit>

4They also considered the cases ttr > tcr and tcr < ttr; I picked ttr ∼ tcr just to keep this problem short(ish).



(b) A small-amplitude fast mode of amplitude B‖ and wavenumber k > 0 propagates across
a uniform magnetic field B0ẑ through an otherwise stationary, uniform, ideal-MHD
plasma. The magnetic field and fluid velocity are given by

B = B0ẑ +B‖ sin
[
k(x− vft)

]
ẑ and u = vf

B‖
B0

sin
[
k(x− vft)

]
x̂,

respectively, where vf
.
=
√
v2A + a2 is the fast magnetosonic speed. Neglecting terms of

order B2
‖ and higher, compute all guiding-center drifts for this wave. Draw them for

an electron on the figure below:

x = 0

<latexit sha1_base64="TRaqs71ZBtso3fvw6BY2pNAVCIs="></latexit>

B
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18. Drifts in dipoles. The equation for a dipole magnetic field in spherical coordinates
is given by

B =
3r(m · r)

r5
− m
r3

=
m

r3

(
2 cosϑ r̂ + sinϑ ϑ̂

)
, (9)

where m = mẑ is the magnetic moment.

(a) Show that the equation for a magnetic-field line is r = R sin2 ϑ, where R is the radius
of the magnetic-field line at the equator (ϑ = π/2).

(b) Show that the curvature of the magnetic-field line at the equator (ϑ = π/2) is Rc = R/3.

(c) Compute the curvature drift of a particle with charge q and parallel kinetic energy W‖
at a radial distance R at the equator.

(d) Compute the grad-B drift of a particle with charge q and perpendicular kinetic energy
W⊥ at a radial distance R at the equator. For what ratio W⊥/W‖ are the drifts the
same?

Now suppose there are two aligned magnetic dipoles with momentm spatially separated by
2a about the origin. Using (9), the resulting magnetic field is given by

B(r) =

[
3r+(m · r+)

r5+
− m
r3+

]
+

[
3r−(m · r−)

r5−
− m
r3−

]
, (10)

where r±
.
= r ± a. This field may be obtained by taking the curl of the vector potential

A(r) =
m×r+
r3+

+
m×r−
r3−

. (11)

Because ∂A/∂t = 0, we have E = 0. Some magnetic-field lines in the z = 0 plane, obtained
from the isocontours of Ay, are shown below, with those in red revealing a magnetic bottle:



(e) Place a particle in the center of the mirror and launch it with velocity v. Discuss how
the particle moves for various initial pitch angles, vx(0)/v(0).

(f) Suppose the distance between the two dipoles in part (e) is adiabatically shrunk in half:

a→ a(t) = 10x̂− 2.5
{

1 + tanh[γ(t− tf/2)]
}
x̂,

with γ � 1, as shown in the figure below:

The vector potential defined by equation (11) then depends upon time,A(r)→ A(t, r),
and so there is a non-zero electric field, E(t, r) = −∂A/∂t. Discuss how the particle
will move if v(0) = (x̂+ ŷ)/

√
2 (i.e., an initial pitch angle of 45◦). In particular, what

will v‖ = v · b̂ look like versus time?

Kinetics

19. Weibel instability. Consider a collisionless, unmagnetized, uniform plasma whose
velocity distribution function of each species α is anisotropic with respect to the ẑ direction
of a Cartesian coordinate system:

f0α(v‖, v⊥) =
nα√
πvth‖α

exp

(
−

v2‖
v2th‖α

)
1

πv2th⊥α
exp

(
− v2⊥
v2th⊥α

)
, (12)



where v‖ = v · ẑ, v⊥ = |v⊥|, and v⊥ = v − v‖ẑ. This bi-Maxwellian distribution function
is characterized by the number density nα and two different temperatures: the parallel
temperature T‖α

.
= mαv

2
th‖α/2 and the perpendicular temperature T⊥α

.
= mαv

2
th⊥α/2. Into this

plasma, introduce small-amplitude electromagnetic fluctuations as follows:

fα(t, z,v) = f0α(v‖, v⊥) + δfα(v) exp(−iωt+ ikz),
E(t, z) = 0 + δE exp(−iωt+ ikz),
B(t, z) = 0 + δB exp(−iωt+ ikz),

where ω is the (complex) frequency and k > 0 is the wavenumber. With page 30 of the NRL
formulary in hand, answer the following:

(a) Retaining only terms linear in the fluctuation amplitudes, use the Vlasov and Maxwell
equations to show that

δfα =
i

k

[
ẑ

v‖ − ω/k
∂f0α
∂v‖

+
kv⊥
ω

(
1

v‖ − ω/k
∂f0α
∂v‖
− 1

v⊥

∂f0α
∂v⊥

)]
· qα
mα

δE. (13)

(b) For an isotropic Maxwellian f0α = f0α(v) with T‖α = T⊥α = Tα, equation (13) becomes

δfα =
i

kv‖ − ω
∂f0α
∂v
· qα
mα

δE.

Interpret this equation physically, paying particular attention to the pole at ω = kv‖.

(c) Use the appropriate Maxwell equations to show that

δE = −4πi

ω

∑
α

qα

∫
d3v

[
v‖ẑ + v⊥

(
1− k2c2

ω2

)−1]
δfα. (14)

(d) Combine equations (12)–(14) to derive the dispersion relation ε‖(ω, k)ε⊥(ω, k) = 0,
where

ε‖(ω, k)
.
= 1 + 2

∑
α

ω2
pα

ω2
ζ2α
(
1 + ζαZ(ζα)

)
, (15a)

ε⊥(ω, k)
.
= 1 +

∑
α

ω2
pα

ω2

(
1− k2c2

ω2

)−1 [
T⊥α
T‖α

(
1 + ζαZ(ζα)

)
− 1

]
. (15b)

Here, ω2
pα

.
= 4πq2αnα/mα is the square of the plasma frequency, and ζα

.
= ω/|k‖|vth‖α is

the dimensionless phase velocity that features as the argument of the plasma dispersion
function Z(ζα). (Some advice: Working in cylindrical coordinates with d3v = πdv‖dv

2
⊥

will simplify your velocity-space integrals considerably.)

(e) The solution ε‖(ω, k) = 0 represents purely electrostatic fluctuations in the plasma,
including the plasma oscillations and ion-acoustic waves. In a collisionless plasma,
these fluctuations are Landau damped.

Our concern here is the solution ε⊥(ω, k) = 0 for electromagnetic fluctuations. Take the
plasma to be non-relativistic and to be composed of ions and electrons withme/mi � 1.



Show that, in one of the tractable asymptotic limits, this dispersion relation has a zero-
frequency, purely growing solution with the growth rate

γ ≈
kvth‖e√

π

T‖e
T⊥e

(
∆e − k2d2e

)
, where ∆e

.
=
T⊥e
T‖e
− 1 > 0 (16)

is the fractional temperature anisotropy and de = c/ωpe is the electron skin depth. Evi-
dently, collisionless, unmagnetized, temperature-anisotropic plasmas can spontaneously
grow magnetic fields at an exponential rate! This is the famous Weibel instability, which
features prominently in several scenarios for cosmic magnetogenesis and in many lab-
oratory laser-plasma experiments.

(f) Use equation (16) to show that the maximum growth rate of the Weibel instability and
its associated wavenumber are given by

γmax ≈
2ωpe

3
√

3π

vth‖e
c

T‖e
T⊥e

∆3/2
e and kmaxde = (∆e/3)1/2, (17)

respectively. Under what condition(s) is the asymptotic limit in which you obtained
equation (16) a valid approximation for this solution?

(g) In order to grow, this instability requires particles to be able to free stream across the
direction of the fluctuating magnetic field. With this knowledge, use equation (17) to
give a rough estimate for the plasma βe at which the instability should shut itself off.
Explain your answer.


