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PART I

Introduction to astrophysical plasmas
I.1. What is a plasma?

Astrophysical plasmas are remarkably varied, and so it may appear difficult at first
to provide a definition of just what constitutes a “plasma”. Is it an ionized, conducting
gas? Well, the cold, molecular phase of the interstellar medium has a degree of ionization
of .10−6, and yet is considered a plasma. (Indeed, plenty of researchers still model
this phase using ideal magnetohydrodynamics!) Okay, so perhaps a sufficiently ionized,
conducting gas (setting aside for now what is meant precisely by “sufficiently”)? Well,
plasmas don’t necessarily have to be good conductors. Indeed, many frontier topics in
plasma astrophysics involve situations in which resistivity is fundamentally important.

Clearly, any definition of a plasma must be accompanied by qualifiers, and these
qualifiers are often cast in terms of dimensionless parameters that compare length and
time scales. Perhaps the most important dimensionless parameter in the definition of a
plasma is the plasma parameter,

Λ
.
= neλ

3
D, (I.1)

where ne is the electron number density and

λD
.
=

(
T

4πe2ne

)1/2

= 7.4

(
TeV
ncm−3

)1/2

m (I.2)

is the Debye length. We’ll derive this formula for the Debye length and discuss its
physics more in § III.1 of these notes, but for now I’ll simply state its meaning: it
is the characteristic length scale on which the Coulomb potential of an individual
charged particle is exponentially attenuated (“screened”) by the preferential accumulation
(exclusion) of oppositely- (like-) charged particles into (from) its vicinity.1 Thus, Λ reflects
the number of electrons in a Debye sphere. Its dependence upon the temperature T
suggests an alternative interpretation of Λ:

Λ =
T

4πe2/λD
∼ kinetic energy

potential energy
. (I.3)

Indeed, if the plasma is in thermodynamic equilibrium with a heat bath at temperature
T , then the concentration of discrete charges follows the Boltzmann distribution,

nα(r) = nα exp

(
−qαφ(r)

T

)
, (I.4)

where nα is the mean number density of species α, qα is its electric charge, and φ(r) is
the Coulomb potential. In the limit Λ→∞, the distribution of charges becomes uniform,
i.e., the plasma is said to be quasi-neutral, with equal amounts of positive and negative
charge within a Debye sphere.

Debye shielding is fundamentally due to the polarization of the plasma and the
associated redistribution of space charge, and is an example of how a plasma behaves as a
dielectric medium. The hotter plasma, the more kinetic energy, the less bound individual
electrons are to the protons. When Λ� 1, collective electrostatic interactions are much
more important than binary particle–particle collisions, and the plasma is said to be

1In this course, sometimes temperature will be measured in Kelvin, and sometimes temperature
will be measured in energy units (eV) after a hidden multiplication by Boltzmann’s constant kB.
An energy of 1 eV corresponds to a temperature of ∼104 K (more precisely, '1.16× 104 K).



4 M. W. Kunz

weakly coupled. These are the types of plasmas that we will focus on in this course (e.g.,
the intracluster medium of galaxy clusters has Λ ∼ 1015).

Shown below is a rogue’s gallery of astrophysical and space plasmas in the T–n plane,
with the Λ = 1 line indicating a divide between quasi-neutral plasmas (to the left) and
metals (to the right):

Clearly, there is a lot of parameter space here and so, to classify these plasmas further,
we require additional dimensionless parameters.

I.2. Fundamental length and time scales
Another useful dividing line between different types of astrophysical and space plasmas

is whether they are collisional or collisionless. In other words, is the mean free path
between particle–particle collisions, λmfp, larger or smaller than the macroscopic length
scales of interest, L. If λmfp � L, then the plasma is said to behave as a fluid, and various
hydrodynamic and magnetohydrodynamic (MHD) equations can be used to describe its
evolution. If, on the other hand, the mean free path is comparable to (or perhaps even
larger than) the macroscopic length scales of interest, the plasma cannot be considered
to be in local thermodynamic equilibrium, and the full six-dimensional phase space (3
spatial coordinates, 3 velocity coordinates) through which the constituent particles move
must be retained in the description. Written in terms of the thermal speed of species α,

vthα
.
=

(
2Tα
mα

)1/2

, (I.5)

and the collision timescale τα, the collisional mean free path is

λmfp,α
.
= vthατα. (I.6)
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For electron–ion collisions,

τei =
3
√
meT

3/2
e

4
√
2πneλeZ2e4

' 3.4× 105
(

T
3/2
eV

ncm−3λeZ2

)
s, (I.7)

where Ze is the ion charge and λe is the electron Coulomb logarithm; for ion–ion collisions,

τii =
3
√
miT

3/2
i

4
√
πniλiZ4e4

' 2.1× 107
(

T
3/2
eV

ncm−3λiZ4

)
s, (I.8)

where λi is the ion Coulomb logarithm. Note that the resulting λmfp,e and λmfp,i differ
only by a factor of order unity:

λmfp,e =
3

4
√
π

T 2
e

neλeZ2e4
, λmfp,i =

3
√
2

4
√
π

T 2
i

niλiZ4e4
,

and so one often drops the species subscript on λmfp. With these definitions, it becomes
clear that the plasma parameter (I.1) also reflects the ratio of the mean free path to the
Debye length:

Λ
.
=
neλ

4
D

λD
∼ T 2

e /ne/e
4

λD
∼ λmfp

λD
; (I.9)

again, a measure of the relative importance of collective effects (λD) and binary collisions
(λmfp).

Independent of whether a given astrophysical plasma is collisional or collisionless,
nearly all such plasmas host magnetic fields, either inherited from the cosmic background
in which they reside or produced in situ by a dynamo mechanism. There are two ways in
which the strength of the magnetic field is quantified. First, the plasma beta parameter:

βα
.
=

8πnαTα
B2

, (I.10)

which reflects the relative energy densities of the thermal motions of the plasma particles
and of the magnetic field. Note that

βα =
2Tα
mα
× 4πmαnα

B2
=
v2thα
v2Aα

, (I.11)

where

vAα
.
=

B√
4πmαnα

(I.12)

is the Alfvén speed for species α.2 Second, the plasma magnetization, ρα/L, where

ρα
.
=
vthα
Ωα

(I.13)

is the Larmor radius of species α and

Ωα ≡
qαB

mαc
(I.14)

is the gyro- (or cyclotron, or Larmor) frequency. What distinguishes many astrophysical
plasmas from their terrestrial laboratory counterparts is that the former can have β � 1
even though ρ/L≪ 1.3 In other words, a magnetized astrophysical plasma need not have

2Usually, a single Alfvén speed, vA
.
= B/

√
4π%, is given for a plasma with mass density %.

3The ∼5 keV intracluster medium of galaxy clusters can be magnetized by a magnetic field as
weak as ∼10−18 G.
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an energetically important magnetic field, and β � 1 does not preclude the magnetic
field from having dynamical consequences. You’ve been warned.

There are two more kinetic scales worth mentioning at this point, which we will come
to later in this course: the plasma frequency,

ωpα =

(
4πnαe

2

mα

)1/2

, (I.15)

and the skin depth (or inertial length),

dα
.
=

c

ωpα
=

(
mαc

2

4πnαe2

)1/2

. (I.16)

The former is the characteristic frequency at which a plasma oscillates when one sign of
charge carriers is displaced from the other sign by a small amount (see § III.2). Indeed,
the factor (4πnαe

2) should look familiar from the definition of the Debye length (see
(I.2)). The latter is the characteristic scale below which the inertia of species α precludes
the propagation of (certain) electromagnetic waves. For example, the ion skin depth is
the scale at which the ions decouple from the electrons and any fluctuations in which the
electrons are taking part (e.g., whistler waves). The following relationship between the
skin depth and the Larmor radius may one day come in handy:

dα =
vA,α
Ωα

=
ρα

β
1/2
α

. (I.17)

I.3. Examples of astrophysical and space plasmas
This part is given as a keynote presentation. Here I simply provide a chart of useful

numbers on the next page (ICM = intracluster medium; JET = Joint European Torus,
a nuclear fusion experiment; ISM = interstellar medium). For quick reference, the Earth
has a ∼0.5 G magnetic field, 1 eV ∼ 104 K, 1 au ≈ 1.5 × 1013 cm, 1 pc ≈ 3 × 1018 cm,
1 pc Myr−1 ' 1 km s−1.
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PART II

Fundamentals of hydrodynamics
Covered by Dr. Hosking, but here are some supplementary notes. . .

Unfortunately, fluid dynamics has all but disappeared from the US undergraduate cur-
riculum, as physics departments have made way for quantum mechanics and condensed
matter.4 This is a shame – yes, it’s classical physics and thus draws less ‘oohs’ and ‘aahs’
from the student (and professorial, for that matter) crowd. But there are many good
reasons to study it. First, it forms the bedrock of fascinating and modern topics like
non-equilibrium statistical mechanics, including the kinetic theory of gases and particles.
Second, it is mathematically rich without being physically opaque. The more you really
understand the mathematics, the more you really understand physically what is going
on; the same cannot be said for many branches of modern physics. Third, nonlinear
dynamics and chaos, burgeoning fields in their own right, are central to arguably the
most important unsolved problem in classical physics: fluid turbulence. Solve that, and
your solution would have immediate impact and practical benefits to society. Finally,

4An excellent textbook from which to learn elementary fluid dynamics is Acheson’s Elementary
Fluid Dynamics. It provides an engaging mix of history, physical insight, and transparent
mathematics. I recommend it.



8 M. W. Kunz

follow in the footsteps of greatness: on Feynman’s chalkboard at the time of his death
was the remit ‘to learn . . . nonlinear classical hydro’. With that, let’s begin.

II.1. The equations of ideal hydrodynamics
The equations of hydrodynamics and MHD may be obtained rigorously by taking

velocity-space moments of the Boltzmann and Vlasov–Landau kinetic equations. Huh?
What? Okay, we’ll get to that soon enough. For now, let’s begin with things that
you already know: mass is conserved, Newon’s second law (force equals mass times
acceleration), and the first law of thermodynamics (energy is conserved).

II.1.1. Mass is conserved: The continuity equation
We describe our gaseous fluid by a mass density ρ, which in general is a function of

time t and position r.5 Imagine an arbitrary volume V enclosing some of that fluid. The
mass inside of the volume is simply

M =

∫
V
dV ρ. (II.1)

Now let’s mathematize our intuition: within this fixed volume, the only way the enclosed
mass can change is by material flowing in or out of its surface S:

dM

dt

.
=

∫
V
dV

∂ρ

∂t
= −

∫
S
dS · ρu, (II.2)

where u is the flow velocity.

Gauss’ theorem may be applied to rewrite the right-hand side of this equation as follows:∫
S
dS · ρu =

∫
V
dV ∇· (ρu). (II.3)

Because the volume under consideration is arbitrary, the integrands of the volume
integrals in (II.2) and (II.3) must be the same. Therefore,

∂ρ

∂t
+∇· (ρu) = 0 (II.4)

This is the continuity equation; it’s the differential form of mass conservation.

Exercise. Go to the bathroom and turn on the sink slowly to get a nice, laminar stream flowing
down from the faucet. Go on, I’ll wait. If you followed instructions, then you’ll see that the
stream becomes more narrow as it descends. Knowing that the density of water is very nearly

5I sometimes denote the mass density by % to avoid confusion with the Larmor radius ρ. But,
given that ρ is standard notation in hydrodynamics for the mass density, and ρ is standard
notation in plasma physics for the Larmor radius, you should learn to tell the difference based
on the context.
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constant, use the continuity equation to show that the cross-sectional area of the stream A(z)
as a function of distance from the faucet z is

A(z) =
A0√

1 + 2gz/v20
,

where A0 is the cross-sectional area of the stream upon exiting the faucet with velocity v0 and
g is the gravitational acceleration. If you turn the faucet to make the water flow faster, what
happens to the tapering of the stream?

II.1.2. Newton’s second law: The momentum equation
So far we have an equation for the evolution of the mass density ρ expressed in terms

of the fluid velocity u. How does the latter evolve? Newton’s second law provides the
answer: simply add up the accelerations, divide by the mass (density), and you’ve got
the time rate of change of the velocity. But there is a subtlety here: there is a difference
between the time rate of change of the velocity in the lab frame and the time rate of
change of the velocity in the fluid frame. So which time derivative of u do we take? The
key is in how the accelerations are expressed. Are these accelerations acting on a fixed
point in space, or are they acting on an element of our fluid? It is much easier (and
more physical) to think of these accelerations in the latter sense: given a deformable
patch of the fluid – large enough in extent to contain a very large number of atoms but
small enough that all the macroscopic variables such as density, velocity, and pressure
have a unique value over the dimensions of the patch – what forces are acting on that
patch? These are relatively simple to catalog, and we will do so in short order. But first,
let’s answer our original question: which time derivative of u do we take? Since we have
committed to expressing the forces in the frame of the fluid element, the acceleration
must likewise be expressed in this frame. The acceleration is not

∂u

∂t
. (II.5)

Remember what a partial derivative means: something is being fixed! Here, it is the
instantaneous position r of the fluid element. Equation (II.5) is the answer to the
question, ‘how does the fluid velocity evolve at a fixed point in space?’ Instead, we
wish to fix our sights on the fluid element itself, which is moving. The acceleration we
calculate must account for this frame transformation:

a =
∂u

∂t
+

dr

dt
·∇u, (II.6)

where dr/dt is the rate of change of the position of the fluid element, i.e., the velocity
u(t, r). This combination of derivatives is so important that it has its own notation:

D

Dt

.
=

∂

∂t
+ u ·∇. (II.7)

It is variously referred to as the Lagrangian derivative, or comoving derivative, or
convective derivative. By contrast, the expression given by (II.5) is the Eulerian deriative.
Note that the continuity equation (II.4) may be expressed using the Lagrangian derivative
as

D ln ρ

Dt
= −∇·u, (II.8)

which states that incompressible flow corresponds to ∇·u = 0.
So, given some force F per unit volume that is acting on our fluid element, we now

know how the fluid velocity evolves: force (per unit volume) equals mass (per unit volume)
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times acceleration (in the frame of the fluid element):

F = ρ
Du

Dt
. (II.9)

Now we need only catalog the relevant forces. This could be, say, gravity: ρg = −ρ∇Φ.
Or, if the fluid element is conducting, electromagnetic forces (which we’ll get to later in
the course). But the most deserving of discussion at this point is the pressure force due
to the internal thermal motions of the particles comprising the gas. For an ideal gas, the
equation of state is

P =
ρkBT

m

.
= ρC2, (II.10)

where T is the temperature in Kelvin, kB is the Boltzmann constant, m is the mass
per particle, and C is the speed of sound in an isothermal gas. Plasma physicists often
drop Boltzmann’s constant and register temperature in energy units (e.g., eV), and I will
henceforth do the same in these notes. How does gas pressure due to microscopic particle
motions exert a macroscopic force on a fluid element? First, the pressure must be spatially
non-uniform: there must be more or less energetic content in the thermal motions of the
particles in one region versus another, whether it be because the gas temperature varies
in space or because there are more particles in one location as opposed to another. For
example, the pressure force in the x direction in a slab of thickness dx and cross-sectional
area dy dz is [

P (t, x− dx/2, y, z)− P (t, x+ dx/2, y, z)
]
dy dz = −∂P

∂x
dV. (II.11)

Unless the thermal motions of the particles are not sufficiently randomized to be isotropic
(e.g., if the collisional mean free path of the plasma is so long that inter-particle collisions
cannot drive the system quickly enough towards local thermodynamic equilibrium), there
is nothing particularly special about the x direction, and so the pressure force force acting
on some differential volume dV is just −∇P dV .

Assembling the lessons we’ve learned here, we have the following force equation for our
fluid:

ρ
Du

Dt

.
= ρ

(
∂

∂t
+ u ·∇

)
u = −∇P − ρ∇Φ (II.12)

This equation is colloquially known as the momentum equation, even though it evolves
the fluid velocity rather than its momentum density. To obtain an equation for the latter,
the continuity equation (II.4) may be used to move the mass density into the time and
space derivatives:

∂(ρu)

∂t
+∇· (ρuu) = ∂ρ

∂t
u+ ρ

∂u

∂t
+ ρu ·∇u+∇· (ρu)u

=

[
∂ρ

∂t
+∇· (ρu)

]
u+ ρ

(
∂

∂t
+ u ·∇

)
u

=

[
0

]
u+ ρ

Du

Dt
= F . (II.13)

Thus, an equation for the momentum density:

∂(ρu)

∂t
+∇· (ρuu) = −∇P − ρ∇Φ (II.14)

This form is particularly useful for deriving an evolution equation for the kinetic energy
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density. Dotting (II.14) with u and grouping terms,

∂

∂t

(
1

2
ρu2
)
+∇·

(
1

2
ρu2u

)
= −u ·∇P − ρu ·∇Φ, (II.15)

which is a statement that the kinetic energy of a fluid element changes as work is done
by the forces.

Now, how to we know the pressure P? There’s an equation for that. . .

II.1.3. First law of thermodynamics: The internal energy equation
There are several ways to go about obtaining an evolution equation for the pressure.

One way is to introduce the internal energy,

e
.
=

P

γ − 1
(II.16)

and use the first law of thermodynamics to argue that e is conserved but for P dV work:

∂e

∂t
+∇· (eu) = −P∇·u (II.17)

This is the internal energy equation.
Equation (II.17) may be used to derive a total (kinetic + internal + potential) energy

equation for the fluid as follows. Do (II.15) + (II.17):

∂

∂t

(
1

2
ρu2 + e

)
+∇·

[(
1

2
ρu2 + e

)
u

]
= −∇· (Pu)− ρu ·∇Φ,

= −(γ − 1)∇· (eu)− ρu ·∇Φ

=⇒ ∂

∂t

(
1

2
ρu2 + e

)
+∇·

[(
1

2
ρu2 + γe

)
u

]
= −ρu ·∇Φ. (II.18)

Now use the continuity equation (II.4) to write

∂(ρΦ)

∂t
+∇· (ρΦu) = ρu ·∇Φ+ ρ

∂Φ

∂t
. (II.19)

Adding this equation to (II.18) yields the desired result:

∂

∂t

(
1

2
ρu2 + e+ ρΦ

)
+∇·

[(
1

2
ρu2 + γe+ ρΦ

)
u

]
= ρ

∂Φ

∂t
(II.20)

The first term in parentheses under the time derivative is sometimes denoted by E .
Yet another way of expressing the internal energy equation (II.17) is to write e =

ρT/m(γ − 1) and use the continuity equation (II.4) to eliminate the derivatives of the
mass density. The result is

D lnT

Dt
= −(γ − 1)∇·u, (II.21)

which states that the temperature of a fluid element is constant in an incompressible
fluid (viz., one with ∇·u = 0). If this seems intuitively unfamiliar to you, consider this:
the hydrodynamic entropy of a fluid element is given by

s
.
=

1

γ − 1
lnPρ−γ =

1

γ − 1
lnTρ1−γ . (II.22)

Taking the Lagrangian time derivative of the entropy along the path of a fluid element
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yields

Ds

Dt
=

D lnT

Dt
− (γ − 1)

D ln ρ

Dt
. (II.23)

It is then just a short trip back to (II.8) to see that (II.21) is, in fact, the second law of
thermodynamics – entropy is conserved in the absence of sources or dissipative sinks:

Ds

Dt
= 0 (II.24)

II.2. Summary: Adiabatic equations of hydrodynamics
The adiabatic equations of hydrodynamics, written in conservative form, are:

∂ρ

∂t
+∇· (ρu) = 0, (II.25a)

∂(ρu)

∂t
+∇· (ρuu) = −∇P − ρ∇Φ, (II.25b)

∂e

∂t
+∇· (eu) = −P∇·u. (II.25c)

The left-hand sides of these equations express advection of, respectively, the mass density,
the momentum density, and the internal energy density by the fluid velocity; the right-
hand sides represents sources and sinks. If the gravitational potential is due to self-gravity,
then one must additionally solve the Poisson equation,

∇2Φ = 4πGρ. (II.26)

where G is Newton’s gravitational constant.
If we instead write these equations in terms of the density, fluid velocity, and entropy

and make use of the Lagrangian derivative (II.7), we have

Dρ

Dt
= −ρ∇·u, (II.27a)

Du

Dt
= −1

ρ
∇P −∇Φ, (II.27b)

Ds

Dt
= 0, (II.27c)

where s .
= (γ − 1)−1 lnPρ−γ . The limit γ → ∞, often of utility for describing liquids,

corresponds to Dρ/Dt = 0, i.e., incompressibility.

Exercise. Show that the gravitational force on a self-gravitating fluid element may be written as

− ρ∇Φ = −∇·
(
gg

4πG
− g2

8πG
I
)
, (II.28)

where g = −∇Φ, g2 = g · g, and I is the unit dyadic. The quantity inside the divergence operator
is known as the gravitational stress tensor. Because it’s written in the form of a divergence, it
represents the flux of total momentum through a surface due to gravitational forces.
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II.3. Mathematical matters
II.3.1. Vector identities

As a start to this section, let me advise you to brush up on your vector calculus. . .

A · (B×C) = B · (C×A) = C · (A×B),

A× (B×C) = B(A ·C)−C(A ·B),

∇· (A×B) = B · (∇×A)−A · (∇×B),

∇× (A×B) = (B ·∇)A− (A ·∇)B −B(∇·A) +A(∇·B),

A× (∇×B) +B× (∇×A) =∇(A ·B)− (A ·∇)B − (B ·∇)A,

. . .

Fluid dynamics is full of these things, and you should either (i) commit them to memory,
(ii) carry your NRL formulary with you everywhere, or (iii) know how to quickly derive
them using things like

εkijεk`m = δi`δjm − δimδj`,

where δij is the Kronecker delta and εijk is the Levi–Civita symbol.

II.3.2. Leibniz’s rule and the Lagrangian derivative of integrals

In the proofs of many conservation laws, a Lagrangian time derivative is taken of a
surface or volume integral whose integration limits are time-dependent. In this case, D/Dt
does not commute with the integral sign. The trick to dealing with these situations is
related to Leibniz’s rule:

d

dt

∫ b(t)

a(t)

dx f(t, x) =

∫ b(t)

a(t)

dx
∂

∂t
f(t, x) + f(t, b(t))

db

dt
− f(t, a(t))da

dt
. (II.29)

In three dimensions, if we’re taking the time derivative of a volume integral whose
integration limits V(t) are time-dependent, the generalization of the above is

d

dt

∫
V(t)

dV f(t, r) =
∫
V(t)

dV ∂

∂t
f(t, r) +

∮
∂V(t)

dS ·
[
f(t, r)ub(t, r)

]
, (II.30)

where ub is the velocity of the bounding surface ∂V(t). This is known as the Reynolds
transport theorem. In words, the time rate-of-change of a quantity positioned within a
moving volume is a combination of the lab-frame rate-of-change of that quantity (i.e., the
time derivative at fixed position r – note the partial derivative) and how much of that
quantity flowed through the surface. When the velocity of the bounding surface equals
the fluid velocity, ub = u(t, r), so that each moving volume corresponds to that of a fluid
element, we may replace d/dt in (II.30) with the Lagrangian derivative D/Dt:

D

Dt

∫
V(t)

dV f(t, r) =
∫
V(t)

dV ∂

∂t
f(t, r) +

∮
∂V(t)

dS ·
[
f(t, r)u(t, r)

]
(II.31)

You’ve already encountered an example of this – mass conservation, in which the volume
was a “material volume” moving with the fluid element itself:

0 =
DM

Dt

.
=

D

Dt

∫
V(t)

dV ρ =

∫
V(t)

dV ∂ρ
∂t

+

∮
∂V(t)

dS ·
(
ρu
)
.
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Using the divergence theorem on the final (surface-integral) term gives

0 =

∫
V(t)

dV
[
∂ρ

∂t
+∇·

(
ρu
)]
,

which provides us with our continuity equation.
A similar rule to (II.31) is needed for time derivatives of surface integrals whose

integration limits S(t) are time-dependent. For a vector field F = F (t, r) and a bounding
surface S(t) whose contour ∂S(t) moves with the fluid velocity u = u(t, r), this is given
by

D

Dt

∫
S(t)

dS ·F =

∫
S(t)

dS ·
[
∂F

∂t
+ (∇·F )u

]
−
∮
∂S(t)

d` · (u×F ) (II.32)

(By convention, the contour is taken in the counter-clockwise direction.) Note that
−d` · (u×F ) = F · (u×d`). In words, the comoving change of the differential surface
element dS equals the amount of area swept out in a time dt via the advection of a
differential line element d` on ∂S by a distance udt :

iyrl qñlrtfr? ,g,
¥ÑH=uTrtÑ) - ñcr )

ñ =s%Iñ

E- ñdtxde

*¥¥€.Friedt\
,
-
lnezslttdt)

Equation (II.32) can be used to prove conservation of magnetic flux (§IV.1.1) and
conservation of fluid vorticity (§II.4).

II.3.3. u ·∇u and curvilinear coordinates
Finally, the nonlinear combination u ·∇u that features prominently in the Lagrangian

time derivative can be complicated, particularly in curvilinear coordinates where the
gradient operator within it acts on the unit vectors within u. For example, in cylindrical
coordinates (R,ϕ, z),

u ·∇u = u ·∇
(
uRR̂+ uϕϕ̂+ uzẑ)

= (u ·∇uR)R̂+ (u ·∇uϕ)ϕ̂+ (u ·∇uz)ẑ +
u2ϕ
R

∂ϕ̂

∂ϕ
+
uRuϕ
R

∂R̂

∂ϕ

= (u ·∇ui)êi −
u2ϕ
R
R̂+

uRuϕ
R

ϕ̂, (II.33)

where, to obtain the final equality, we have used ∂ϕ̂/∂ϕ = −R̂ and ∂R̂/∂ϕ = ϕ̂;
summation over the repeated index i is implied in the first term in the final line.

Exercise. Follow a similar procedure to show that, in spherical coordinates (r, θ, ϕ),

u ·∇u =

(
ur

∂

∂r
+
uθ
r

∂

∂θ
+

uϕ
r sin θ

∂

∂ϕ

)(
urr̂ + uθθ̂ + uϕϕ̂

)
= (u ·∇ui)êi −

u2
θ + u2

ϕ

r
r̂ +

(
uruθ
r
−
u2
ϕ cot θ

r

)
θ̂ +

(
uθuϕ cot θ

r
+
uruϕ
r

)
ϕ̂.
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The last two terms in the cylindrical u ·∇u, equation (II.33), might look familiar to
you from working in rotating frames. Indeed, let us write u = v +RΩ(R, z)ϕ̂, where Ω
is an angular velocity, and substitute this decomposition into (II.33):

u ·∇u =
[
(v +RΩϕ̂) ·∇vi

]
êi +

[
(v +RΩϕ̂) ·∇(RΩ)

]
ϕ̂

− (vϕ +RΩ)2

R
R̂+

vR(vϕ +RΩ)

R
ϕ̂

=

[(
v ·∇+Ω

∂

∂ϕ

)
vi

]
êi +

[
2Ωẑ×v −RΩ2R̂+Rϕ̂(v ·∇)Ω

]
+

[
vRvϕ
R

ϕ̂−
v2ϕ
R
R̂

]
. (II.34)

Each of these terms has a straightforward physical interpretation. The first term in
brackets represents advection by the flow and the rotation. The second term in brackets
contains the Coriolis force, the centrifugal force, and ‘tidal’ terms due to the differential
rotation, in that order. (The ‘tidal’ terms can be thought of the fictitious acceleration
required for a fluid element to maintain its presence in the local rotating frame as it is
displaced radially or vertically. They come from Taylor expanding the angular velocity
about a point in the disk.) The third and final term in brackets captures curvature effects
due to the cylindrical geometry.

Exercise. Show that the Rϕ-component in cylindrical coordinates of the rate-of-strain tensor

Wij
.
=
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

is given by

WRϕ =
1

R

∂uR
∂ϕ

+R
∂

∂R

uϕ
R
.

Hint: ∂ui/∂xj = [(êj ·∇)u] · êi is coordinate invariant.

II.4. Vorticity and Kelvin’s circulation theorem
With some vector identities in hand, let’s take the curl of the force equation (II.27b):

∇×
(
Du

Dt
= −1

ρ
∇P −∇Φ

)
.

The potential term vanishes, since the curl of a gradient is zero. Likewise, the pressure
term becomes

−∇1

ρ
×∇P =

1

ρ2
∇ρ×∇P.

As for the left-hand side, the gradient operator commutes with ∂/∂t, but not with u ·∇.
Instead,

∇×
[
(u ·∇)u

]
=∇×

[
1

2
∇u2 − u× (∇×u)

]
= −∇× (u×ω),

where

ω
.
=∇×u (II.35)
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is the fluid vorticity. The vorticity measures how much rotation a velocity field has (and
its direction). Note that it is divergence free, which means that vortex lines cannot end
within the fluid – they must either close on themselves (like a smoke ring) or intersect
a boundary (like a tornado). Any fresh vortex lines that are made must be created as
continuous curves that grow out of points or lines where the vorticity vanishes.

Assembling the above gives the vorticity equation,

∂ω

∂t
−∇× (u×ω) = 1

ρ2
∇ρ×∇P. (II.36)

Note that the right-hand side of this equation vanishes if the pressure is barotropic, i.e.,
if P = P (ρ), so that surfaces of constant density and constant pressure coincide. If these
surfaces do not coincide, then the fluid is said to have “baroclinicity” or to be “baroclinic”.
I’ll demonstrate below using mathematics what (II.36) means physically, but you already
know what the right-hand side means if you pay attention to the weather: areas of high
atmospheric baroclinicity have frequent hurricanes and cyclones. In the parlance of fluid
dynamics, this is called “baroclinic forcing”. Now back to the math. . .

Dot (II.36) into a differential surface element dS normal to the surface S of a fluid
element, integrate over that surface, and use Stokes’ theorem to replace the surface
integral of a curl with a line integral over the surface boundary ∂S:∫

S

∂ω

∂t
·dS −

∮
∂S

(u×ω) · d` =
∮
∂S

(
−1

ρ
∇P

)
· d` = −

∮
∂S

dP

ρ
.

Using (II.32) to replace the left-hand side by the Lagrangian time derivative of ω · dS
yields

D

Dt

∫
S
ω · dS = −

∮
∂S

dP

ρ
. (II.37)

The surface integral on the left-hand side of this equation may be expressed using Stokes’
theorem as the circulation Γ : ∫

S
ω · dS =

∮
∂S
u · d` .= Γ. (II.38)

The circulation around the boundary ∂S can be thought of as the number of vortex
lines that thread the enclosed area S. Equation (II.37) then states that the circulation is
conserved if the fluid is barotropic – Kelvin’s circulation theorem:6

DΓ

Dt
= −

∮
∂S

dP

ρ
= 0 if P = P (ρ) (II.39)

The figure below illustrates how baroclinic forcing generates vorticity.

6The above manipulations require that the surface is simply connected – that is, the region must
be such that we can shrink the contour to a point without leaving the region. A region with a
hole (like a bathtub drain) is not simply connected.
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Another approach to proving (II.39) is to work with Γ =
∮
∂S
u · d` rather than

∫
S
ω · dS

and use the following for how an advected line element of ∂S changes in time:
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Exercise. The helicity of a region of fluid is defined to be H .
=
∫
ω ·u dV, where the integral

is taken over the volume of that region. Assume that Γ = const and that ω · n̂ vanishes when
integrated over the surface bounding V, where n̂ is the unit normal to that surface. Prove that
the helicity H is conserved in a frame moving with the fluid, viz. DH/Dt = 0. Note that the
fluid need not be incompressible for this property to hold.

The calculation leading to (II.39) can be repeated in a reference frame rotating at a
constant angular velocity Ω, in which the fluid velocity is measured to be v = u−Ω× r
(here, u is the fluid velocity in the inertial frame; see §II.3). The associated vorticity in
this rotating frame is

ωrot = ω−∇× (Ω× r) = ω−Ω(∇· r) + (Ω ·∇)r = ω− 3Ω +Ω = ω− 2Ω, (II.40)

where ω =∇×u. The circulation in the rotating reference frame is then given by

Γrot =

∫
S
ωrot · dS =

∫
S

(
ω − 2Ω

)
· dS

=

∮
∂S
u · d`−

∫
S
2Ω · dS

= Γ −
∫
S
2Ω · dS. (II.41)

Kelvin’s circulation theorem in this rotating frame is therefore

DΓrot

Dt
= −

∮
∂S

dP

ρ
− 2Ω

DSn
Dt

, (II.42)

where Sn is component of the surface area oriented normally to Ω. In words, if the
projected area of the vortex tube in the plane perpendicular to the rotation vector
changes, then the circulation in the rotating frame must change to compensate. This
is the origin of Rossby waves, something that will be discussed further in §II.5.2.
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II.5. Rotating reference frames
The final calculation in the preceding section provides a natural segue into a discussion

of fluid dynamics in rotating reference frames. To begin this discussion, let us first
recall equation (II.34), in which the nonlinearity u ·∇u was written out in cylindrical
coordinates for a fluid velocity u consisting of a cylindrical rotation RΩϕ̂ with angular
velocity Ω = Ω(R, z) and a residual velocity v .

= u−RΩϕ̂:

u ·∇u =

[(
v ·∇+Ω

∂

∂ϕ

)
vi

]
êi +

[
2Ωẑ×v −RΩ2R̂+Rϕ̂(v ·∇)Ω

]
+

[
vRvϕ
R

ϕ̂−
v2ϕ
R
R̂

]
.

When this expansion was introduced in §II.3, each of its components were described
physically: ‘The first term in brackets represents advection by the flow and the rotation.
The second term in brackets contains the Coriolis force, the centrifugal force, and “tidal”
terms due to the differential rotation. . . The third and final term in brackets captures
curvature effects due to the cylindrical geometry.’ Let’s see these terms in action.

Using (II.34), we may express the equations of hydrodynamics (II.27) in cylindrical
coordinates in a frame co-moving with the differential rotation. With

D

Dt
→ ∂

∂t
+ v ·∇+Ω

∂

∂ϕ
(II.43)

to include advection by the rotation, we have

Dρ

Dt
= −ρ∇·v, (II.44a)

DvR
Dt

= fR + 2Ωvϕ +RΩ2 +
v2ϕ
R
, (II.44b)

Dvϕ
Dt

= fϕ −
κ2

2Ω
vR −R

∂Ω

∂Z
vz −

vRvϕ
R

, (II.44c)

Dvz
Dt

= fz, (II.44d)

Ds

Dt
= 0, (II.44e)

where

f = −1

ρ
∇P −∇Φ (II.45)

and the combination

κ2
.
= 4Ω2 +

∂Ω2

∂ lnR
=

1

R3

∂(R4Ω2)

∂R
(II.46)

is known as the (square of the) epicyclic frequency. Note that R4Ω2 = `2, the square
of the specific angular momentum `, and so κ2 measures how much the specific angular
momentum associated with the rotation increases or decreases outwards. For Keplerian
rotation, κ2 = Ω2.

In §VI.9, these equations will be modified for the presence and evolution of magnetic
fields and used to look at linear waves and instabilities that rely on differential rotation. In
the meantime, I’ll close this portion of the notes by remarking on two useful applications
of what you’ve learned here: the thermal wind equation (§II.5.1) and Rossby waves
(§II.5.2).
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II.5.1. Thermal wind equation
In steady state with v = 0, equations (II.44b) and (II.44d) become

0 = −1

ρ

∂P

∂R
− ∂Φ

∂R
+RΩ2 and 0 = −1

ρ

∂P

∂z
− ∂Φ

∂z
. (II.47)

Taking ∂/∂z of the first equation, using the second equation, and rearranging yields

R
∂Ω2

∂z
=
ϕ̂

ρ2
·
(
∇P ×∇ρ

)
. (II.48)

This is the ϕ̂ component of the vorticity equation. Note that, if ρ is constant or if
P = P (ρ), then the angular velocity Ω must be constant on cylinders (this is related to
von Zeippel’s theorem). Now, let us recall the definition of the hydrodynamic entropy,
s = (γ − 1)−1 lnPρ−γ and use it to replace ∇ ln ρ. The result is

R
∂Ω2

∂z
=
γ − 1

γ
ϕ̂ ·
(
∇s× 1

ρ
∇P

)
= ϕ̂ ·

(
1

ρ
∇P ×∇ lnT

)
. (II.49)

In the Sun, g = (1/ρ)∇P is an excellent approximation, with only a tiny angular com-
ponent due to centrifugal effects. Adopting this simplification and working in spherical
coordinates (r, θ, ϕ), equation (II.49) becomes

R
∂Ω2

∂z
=
γ − 1

γ

g

r

∂s

∂θ
(II.50)

where g = GM/r2. [The right-hand side of (II.50) can also be written as−(g/r)∂ lnT/∂θ.]
Equation (II.50) is known as the thermal wind equation. It is used often in geophysical
applications (e.g., longitudinal entropy gradients driven by temperature differences cause
wind shear) and to understand the rotation profile in the convection zone of the Sun.

II.5.2. Rossby waves
Consider a two-dimensional, incompressible fluid on the surface of uniformly rotating

sphere (e.g., a planetary atmosphere). For a constant density or a barotropic equation of
state, equation (II.42) becomes

D

Dt

(
Γrot + 2ΩS cos θ

)
= 0, (II.51)

where θ is the angle between the rotation vector and the surface oriented normal to the
fluid element. (Note that incompressibility assures S = const.) This equation states that,
as a fluid element makes its way from the equator northwards (viz., from θ = π/2 towards
θ = 0), its circulation as measured in the rotating frame must decrease. This means that
the element must then rotate in the clockwise direction. Likewise, a fluid element that
starts at the north pole and moves southwards towards the equator (viz., from θ = 0
towards θ = π/2) increases its relative vorticity and thus rotates in the counterclockwise
direction.

With this behavior in mind, let’s now imagine a small-amplitude, wave-like disturbance
at constant latitude (see diagram below). Northward displacements in this wave acquire
negative relative vorticity and rotate clockwise; southward displacements acquire positive
relative vorticity and rotate counterclockwise. These changes in the velocity of the
disturbance actually feed back on the wave itself to make it travel westward; in effect,
the wave is advecting itself to the west.
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The relationship between the frequency ω and wavevector k for this wave – the dispersion
relation – is given by

ω = − ky
k2x + k2y

2Ω sin θ

r
, (II.52)

where x denotes the local poloidal direction (pointing southward), y denotes the local
azimuthal direction (pointing eastward), and r the spherical radial distance. With Ω > 0
and ky > 0, the phase velocity of the wave ω/ky < 0, i.e., the wave travels westward. Note
that the group velocity, ∂ω/∂ky, can be either positive or negative; in general, shorter
wavelengths (higher k) have an eastward group velocity and longer wavelengths (smaller
k) have a westward group velocity.

These waves are named after the meteorologist Carl Rossby, who derived the mathe-
matics governing this phenomenon in 1939 while at MIT (after which he became assistant
director of research at the U.S. Weather Bureau and then moved to University of Chicago
as Chair of the Department of Meteorology).7

PART III

Fundamentals of plasmas
Covered by Dr. Zhou, but here are some supplementary notes. . .

Now that we have the fluid equations under our belts, let us discuss why we might
expect them to apply to a plasma (instead of the more familiar fluid). There are three
concepts to cover in this regard: Debye shielding and quasi-neutrality, plasma oscillations,
and collisional relaxation of the plasma to take on a Maxwell–Boltzmann distribution of
particle velocities.

III.1. Debye shielding and quasi-neutrality
In § I.1, we mentioned the concept of the Debye length and explained its importance in

the definition of a plasma. Here we actually derive it from first principles. This derivation
starts by recalling that a large plasma parameter Λ� 1 implies that the kinetic energy
of the plasma particles is much greater than the potential energy due to Coulomb
interactions amongst binary pairs of particles. In this case, the plasma temperature T is
much bigger than the Coulomb energy eφ ∼ e2/∆r ∼ e2n1/3, where φ is the electrostatic
potential, ∆r ∼ n−1/3 is the typical interparticle distance, and n is the number density
of the particles. Assuming a plasma in local thermodynamic equilibrium, the number
density of species α′ with charge qα′ sitting in the potential φα of one ‘central’ particle

7See https://images.peabody.yale.edu/publications/jmr/jmr02-01-06.pdf.

https://images.peabody.yale.edu/publications/jmr/jmr02-01-06.pdf
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of species α ought to satisfy the Boltzmann relation

nα′(r) = nα′ exp

(
−qαφα(r)

T

)
≈ nα′

(
1− qα′φα(r)

T

)
, (III.1)

where the potential φα(r) depends on the distance r from the ‘central’ particle. To obtain
the approximate equality, we have used the assumption T � eφα to Taylor expand the
Boltzmann factor in its small argument. Inserting (III.1) into the Gauss–Poisson law for
the electric field E = −∇φα, we have

∇·E = −∇2φα = 4πqαδ(r) + 4π
∑
α′

qα′nα′

≈ 4πqαδ(r) + 4π
∑
α′

qα′nα′ −

(∑
α′

4πnα′q
2
α′

T

)
︸ ︷︷ ︸

.
= λ−2

D

φα. (III.2)

The first term in (III.2) is the point-like charge of the ‘central’ particle located at r = 0.
The second term is the sum over all charges in the plasma, and equals zero if the plasma
is overall charge-neutral (as it should be). The final term introduces the Debye length
(see (I.2)), which is the only characteristic scale in (III.2). Note further that this equation
has no preferred direction, and so we may exploit its spherical symmetry to recast it as
follows:

1

r2
∂

∂r
r2
∂φα
∂r
− 1

λ2D
φα = 4πqαδ(r). (III.3)

The solution to this equation that asymptotes to the Coulomb potential φα → qα/r as
r → 0 and to zero as r →∞ is

φα =
qα
r

exp

(
− r

λD

)
(III.4)

This equation states that the bare potential of the ‘central’ charge is exponentially
attenuated (‘shielded’) on typical distances ∼λD. This is Debye shielding, and the sphere
of neutralizing charge accompanying the ‘central’ charge is referred to as the Debye
sphere (or cloud). Debye shielding of an ion by preferential accumulation of electrons in
its vicinity is sketched below:

Note that the electric field due to the polarization of the plasma in response to the ion’s
bare Coulomb potential acts in the opposite direction to the unshielded electric field.

Now, there was nothing particularly special about the charge that we singled out as
our ‘central’ charge. Indeed, we could have performed the above integration for any
charge in the plasma. This leads us to the fundamental tenet in the statistical mechanics
of a weakly coupled plasma with Λ � 1: every charge simultaneously hosts its own
Debye sphere while being a member of another charge’s Debye sphere. The key points
are that, by involving a huge number of particles in the small-scale electrostatics of the
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plasma, these Coulomb-mediated relations (i) make the plasma ‘quasi-neutral’ on scales
�λD and (ii) make collective effects in the plasma much more important than individual
binary effects due to particle-particle pairings. The latter is what makes a plasma very
different from a neutral gas, in which particle-particle interactions occur through hard-
body collisions on scales comparable to the mean particle size.

One consequence of Debye shielding is that the electric fields that act on large scales
due to the self-consistent collective interactions between ∼Λ Debye clouds are smoothly
varying in space and time. As a result, when we write down Maxwell’s equations
for our quasi-neutral plasma, the fields that appear are these smooth, coarse-grained
fields whose spatial structure resides far above the Debye length. Mathematically, we
average the Maxwell equations over the microscopic (i.e., Debye) scales, and what
remains are the collective macroscopic fields that ultimately make their way into the
magnetohydrodynamics of the plasma ‘fluid’.

III.2. Plasma oscillations
In the previous section, we spoke of a characteristic length scale below which particle-

particle interactions are important and above which they are supplanted by collective
effects between a large number of quasi-neutral Debye spheres. Is there a corresponding
characteristic time scale? The answer is yes, and it may be obtained simply by dimensional
analysis: take our Debye length and divide by a velocity to get time. The only velocity in
our plasma thus far is the thermal speed, vthα =

√
2T/mα, and so that must be it. . . we

have obtained the plasma frequency of species α,

ωpα
.
=

√
4πq2αnα
mα

∼ λD
vthα

. (III.5)

Of particular importance, given the smallness of the electron mass, is the electron plasma
frequency ωpe, which is ∼

√
mi/me larger than the ion plasma frequency and is generally

the largest frequency in a weakly coupled plasma.
Fine. Dimensional analysis works. But what does this frequency actually mean? Go

back to our picture of Debye shielding. That was a static picture, in that we waited long
enough for the plasma to settle down into charge distributions governed by Boltzmann
relations. What if we didn’t wait? Surely there was some transient process whereby the
particles moved around to configure themselves into these nice equilibrated Debye clouds.
There was, and this transient process is referred to as a plasma oscillation, and it has a
characteristic frequency of (you guessed it) ωpe. Let’s show this.

Imagine a spatially uniform, quasi-neutral plasma with well-equilibrated Debye clouds.
Shift all of the electrons slightly to the right by a distance ξ, as shown in the figure below:

The offset between the electrons and the ions will cause an electric field pointing from
the ions to the displaced electrons, given by E = 4πeneξ. The equation of motion for the
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electrons is then

me
d2ξ

dt2
= −eE = −4πe2neξ = −meω

2
peξ =⇒ d2ξ

dt2
= −ω2

peξ. (III.6)

This is just the equation for a simple harmonic oscillator with frequency ωpe. So,
small displacements between oppositely charged species result in plasma oscillations
(or ‘Langmuir oscillations’), a collective process that occurs as the plasma attempts to
restore quasi-neutrality in response to some disturbance. Retaining the effects of electron
pressure makes these oscillations propagate dispersively with a non-zero group velocity;
these Langmuir waves have the dispersion relation ω2 ≈ ω2

pe(1 + 3k2λ2De), where k is the
wavenumber of the perturbation. More on that later.

III.3. Collisional relaxation and the Maxwell–Boltzmann distribution
In order for the plasma particles to move freely as plasma oscillations attempt to set up

equilibrated Debye clouds, the mean free path between particle–particle collisions must
be larger than the Debye length. We may estimate the former in term of the collision
cross-section σ,

λmfp ∼
1

nσ
∼ T 2

ne4
,

where the cross-section σ = πb2 is given by a balance between the Coulomb potential
energy, ∼e2/b, across some typical impact parameter b and the kinetic energy of the
particles, ∼T . Comparing this mean free path to the Debye length (I.2), we find

λmfp

λD
∼ T 2

ne4

(
ne2

T

)1/2

∼ nλ3D
.
= Λ� 1.

Thus, a particle can travel a long distance and experience the macroscopic fields exerted
by the collective electrodynamics of the plasma before being deflected by much the
shorter-range, microscopic electric fields generated by another individual particle (recall
(I.9)).

The scale separation between the collisional mean free path and the Debye length due
to the enormity of the plasma parameter in a weakly coupled plasma says something
very important about the statistical mechanics of the plasma. Because λmfp/λD ∼
ωpeτei � 1, the particle motions are randomized and the velocity distribution of the
plasma particles relaxes to a local Maxwell–Boltzmann distribution on (collisional)
timescales that are much longer than the timescale on which particle correlations are
established and Coulomb potentials are shielded. As a result, collisions in the plasma
occur between partially equilibrated Debye clouds instead of between individual particles,
the mathematical result being that the ratio λmfp/λD is attenuated by a factor ∼ lnΛ ≈
10–40. Thus, the logarithmic factors in the collision times (I.7) and (I.8).

Now, about this collisional relaxation. This school isn’t the place to go through all the
details of how collision operators are derived, but we need to establish a few facts. First,
because of Debye shielding, the vast majority of scatterings that a particle experiences
as it moves through a plasma are small-angle scatterings, with each event changing the
trajectory of a particle by a small amount. These accumulate like a random walk in angle
away from the original trajectory of the particle, with an average deflection angle 〈θ〉 = 0
but with a mean-square deflection angle 〈θ2〉 proportional to the number of scattering
events. For a typical electron scattering off a sea of Debye-shielded ions of charge Ze and
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density n, this angle satisfies

〈θ2〉 ≈ 8πnLZ2e4

m2
ev

4
the

lnΛ (III.7)

after the electron has traversed a distance L. A large deflection angle, i.e. 〈θ2〉 ∼ 1, is
reached once this distance

L ∼ m2
ev

4
the

8πnZ2e4
1

lnΛ
∼ vtheτei

.
= λmfp,e, (III.8)

the collisional mean free path (recall the definition of the electron–ion collision time,
equation (I.7)). Noting that the impact parameter for a single 90-degree scattering
is ∼Ze2/T , we find the ratio of the cross-section for many small-angle scatterings to
accumulate a 90-degree deflection, σmulti,90◦ ∼ 1/nL using (III.8), to the cross-section
for a single 90-degree scattering, σsingle,90◦ = πb2 with b ∼ Ze2/T , is

σmulti,90◦

σsingle,90◦
∼ lnΛ� 1. (III.9)

Thus, in a weakly coupled plasma, multiple small-angle scatterings are more important
than a single large-scale scattering. Visually,

This is the physical origin of the lnΛ reduction in collision time mentioned in the prior
paragraph.

So what do these collisions mean for treating our plasma as a fluid? If λmfp is
much less than any other macroscopic scale of dynamical interest (i.e., scales on which
hydrodynamics occurs), then the velocity distribution function f(v) of the plasma – that
is, the differential number of particles with velocities between v and v + dv – is well
described by a Maxwell–Boltzmann distribution (often simply called a ‘Maxwellian’):

fM(v)
.
=

n

π3/2v3th
exp

(
− v

2

v2th

)
. (III.10)

The factor of π3/2v3th is there for normalization purposes:∫
d3v fM(v) = 4π

∫
dv v2fM(v) = n (III.11)

is the number of particles per unit volume. (Any particle distribution function should
satisfy this constraint.) Note that the Maxwellian is isotropic in velocity space, depending
only on the speed of the particles (rather than their vector velocity). If these particles
are all co-moving with some bulk velocity u, then this ‘fluid’ velocity is subtracted off to
ensure an isotropic distribution function in that ‘fluid’ frame:

fM(v)
.
=

n

π3/2v3th
exp

(
−|v − u|

2

v2th

)
. (III.12)

Note that the first moment of this distribution∫
d3v vfM(v) = nu; (III.13)
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and that the (mass-weighted) second moment of this distribution∫
d3vm|v − u|2fM(v) = 3P. (III.14)

(Again, any velocity distribution function should satisfy these constraints.)
Different species collisionally relax to a Maxwellian at different rates (e.g., τee ∼

τei ∼
√
mi/me τii ∼ (mi/me)τie), and so each species may be described by their own

Maxwellians:

fM,α(v)
.
=

nα
π3/2v3thα

exp

(
−|v − uα|

2

v2thα

)
. (III.15)

But, in the long-time limit, unless some process actively dis-equilibrates the species on a
timescale comparable to or smaller than these collision times, all species will take on the
same u and the same T . Their densities are, of course, the same as well, as guaranteed
by quasi-neutrality (viz., ωpeτ � 1 for all collision times τ).

Note then, that when we wrote down our hydrodynamic equations for a scalar pressure
(see (II.14) and (II.17)) and didn’t affix any species labels to any quantities, we were
implicitly assuming that our hydrodynamics occurs on time scales much longer than
the collisional equilibration times, so that all species can be well described by local
Maxwellians with the same density, fluid velocity, and temperature. Not all astrophysical
systems are so cooperative, and anisotropic pressures, velocity drifts between species,
and dis-equilibration of species temperatures can often be the norm. Yes, hydrodynamics
and MHD are fairly simple, but do not let their simplicity lure you into using them when
it’s not appropriate to do so – a hard-earned lesson for many astrophysicists.

PART IV

Fundamentals of magnetohydrodynamics
IV.1. The equations of ideal magnetohydrodynamics

Ideal magnetohydrodynamics (MHD) describes the hydrodynamics of a perfectly con-
ducting fluid in the presence of electromagnetic fields. Mass is still conserved, so we still
have the continuity equation:

∂ρ

∂t
+∇· (ρu) = 0. (IV.1)

The first law of thermodynamics still holds, so we still have the internal energy equation:

∂e

∂t
+∇· (eu) = −P∇·u. (IV.2)

And Newton’s second law still governs the dynamics, so we still have the momentum
equation:

∂(ρu)

∂t
+∇· (ρuu) = f . (IV.3)

But now we must supplement the force f , which was equal to −∇P − ρ∇Φ in §II, with
the force due to the electromagnetic fields on the conducting fluid elements. To do so,
let us view our conducting fluid elements as a coherent collection of ions (with charge
qi = Ze > 0) and electrons (with charge qe = −e < 0), and ask how electric and magnetic
fields influence each of these species.

The electromagnetic force per unit volume on a collection of charges of species α is
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given by

fEM = qαnα

(
E +

uα
c
×B

)
, (IV.4)

where nα is the number density of the species and uα is that species’ bulk velocity.
You can think of this simply as the Lorentz force qα(E + v×B/c) integrated over
the ensemble of α charges in each fluid element and divided by the volume of said
fluid element. Separating (IV.3) into its charged constituent parts, we then have the
momentum equation for species α,

∂(ραuα)

∂t
+∇· (ραuαuα) = −∇Pα − ρα∇Φ+ qαnα

(
E +

uα
c
×B

)
. (IV.5)

At the moment, the trouble is that our continuity equation (IV.1) and internal energy
equation (IV.2) make reference to the total mass density ρ, the total fluid velocity u, the
total pressure P , and the total internal energy e. The obvious thing to do, then, is to sum
(IV.5) over both species,

∑
α

[
∂(ραuα)

∂t
+∇· (ραuαuα) = −∇Pα − ρα∇Φ+ qαnα

(
E +

uα
c
×B

)]
, (IV.6)

and simplify each of the sums one by one. The first term in (IV.6) becomes familiar after
introducing the center-of-mass fluid velocity,

u
.
=

1

ρ

∑
α

ραuα, where ρ
.
=
∑
α

ρα. (IV.7)

The second term in (IV.6) requires a bit more work. Write uα = u+∆uα, so that ∆uα
measures the difference between the bulk flow of species α and the center-of-mass velocity
u. Then∑

α

ραuαuα = ρuu+ u

(
��

�
��
�*0∑

α

ρα∆uα

)
+

(
��

�
��
�*0∑

α

ρα∆uα

)
u+

∑
α

ρα∆uα∆uα.

The first term here (ρuu) should look familiar: it’s the flux of momentum density
associated with the total fluid, the same as was seen in §II. Moving the final term of
the above expression to the right-hand side of (IV.6) and writing

∑
α Pα

.
= P , we have

a momentum equation that is starting to look more like (IV.3):

∂(ρu)

∂t
+∇· (ρuu) = −∇P−ρ∇Φ−

∑
α

ρα∆uα∆uα+
∑
α

qαnα

(
E +

uα
c
×B

)
. (IV.8)

Now, this term involving ∆uα has nothing really to do with MHD, and was in fact
implicitly discarded in §II.1.2, the reason being either that our fluid element is composed
of a single species, or that collisions between different species keep their bulk flows very
close to the center-of-mass velocity, or that the total mass density and total momentum
density are completely dominated by a single species (e.g., the ions). In any of these
cases, we may safely drop this term.

Almost there. All that remains to consider is∑
α

qαnα

(
E +

uα
c
×B

)
.

In §III.1, we showed that the densities of the positive and negative charge carriers
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surrounding a point charge Q in a weakly coupled plasma satisfies

∑
α

qαnα =

�
�
�
��>

0∑
α

qαnα −
Q

4πλ3D

exp(−r/λD)
r/λD

,

and therefore is extremely close to zero well outside of that charge’s Debye sphere, i.e., the
plasma is quasi-neutral on scales r � λD. MHD concerns itself with just such scales, and
so the total electric force on a fluid element in MHD vanishes under quasi-neutrality. This
leaves the magnetic term, (

∑
α qαnαuα)×B/c. The sum in parentheses is equivalent to

the current density of the plasma, j, the amount of electric current flowing per unit
cross-sectional area. We these principles implemented, our MHD momentum equation is
finally here:

∂(ρu)

∂t
+∇· (ρuu) = −∇P − ρ∇Φ+

j

c
×B (IV.9)

Another way to this of this additional term is by analogy with circuits: when a current
I flows through a wire of length ` in the presence of a magnetic field B, there is a force
on the wire given by I`×B/c. In the fluid context, the ‘wire’ is the conducting fluid
element through which electrons and ions move differentially.

We now have our continuity equation, internal energy equation, and MHD momentum
equation. However, in deriving the latter, we have introduced two new variables, j andB.
The remaining tasks are then to express the current density j in terms of the magnetic
field B (since by summing over the momentum equations of each species, we’ve lost
information about each species’ bulk flow), and to provide an equation for how the
magnetic field evolves. Both of these tasks are solved by Maxwell’s equations:

∂B

∂t
= −c∇×E, ∇·B = 0,

∂E

∂t
= c∇×B − 4πj, ∇·E = 4π

∑
α

qαnα,

with the important caveat that the final equation in red (Gauss’ law) is rendered
completely useless by the quasi-neutrality assumption,

∑
α qαnα ≈ 0. The other equations

are (from left to right) Faraday’s law of induction, Gauss’ law for magnetism (no magnetic
monopoles), and Maxwell’s version of Ampère’s law. No offense to Maxwell, but it turns
out that the original Ampère’s law,

j =
c

4π
∇×B, (IV.10)

is just fine our purposes. The displacement current, (4π)−1∂E/∂t, which mathematically
and physically connects electromagnetism with the propagation of light, may be rigor-
ously dropped if the fluid velocity satisfies u2 � c2. Why, you ask? Well, this brings us
back to the first sentence of this section: we are interested in perfect conductors.

A perfect conductor is one that has exactly zero electrical resistance, and so by Ohm’s
law must have zero electrostatic field. But this doesn’t necessarily mean that E = 0,
because an electric field can be induced by the motion of a conductor through a magnetic
field (sometimes called the ‘motional emf’). What we mean by a perfect conductor is then
that the electric field vanishes in the frame of the conductor, or

E +
u

c
×B = 0. (IV.11)

Inserting this equation into the Maxwell–Ampère law and ordering ∂/∂t ∼ u/` for
some characteristic bulk flow velocity u and gradient lengthscale `, we find that the
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displacement current
∂E

∂t
∼ u2

c2
cB

`
� cB

`
∼ c∇×B

if the flow is non-relativistic. As claimed, the original Ampère’s law is just fine.
Altogether then, we may close our MHD momentum equation with the following subset

of Maxwell’s equations:

∂B

∂t
=∇× (u×B), ∇·B = 0, j =

c

4π
∇×B (IV.12)

These equations for the electromagnetic fields B and j – taken alongside (IV.1), (IV.2),
and (IV.8) specifying the evolution of the hydrodynamics variables (ρ,ρu,e) – constitute
the equations of ideal MHD.

IV.1.1. Flux freezing: Alfvén’s theorem
Arguably the most important prediction of the ideal MHD equations is that the mag-

netic flux ΦB through the surface of any fluid element is exactly conserved as that element
is advected and deformed by a flow u = u(t, r). This is known as ‘Alfvén’s theorem’
or, more colloquially, flux freezing. Given Leibniz’s rule regarding the time derivatives
of surface integrals whose integrations limits S(t) are time-dependent (eq. (II.32)), the
proof itself is trivial:

DΦB
Dt

.
=

D

Dt

∫
S(t)

dS ·B =

∫
S(t)

dS ·
[
∂B

∂t
+ (∇·B)u

]
−
∮
∂S(t)

d` · (u×B)

(use equation (IV.12)) =
∫
S(t)

dS ·
[
∇× (u×B)

]
−
∮
∂S(t)

d` · (u×B)

(use Stokes’ theorem) =
∮
∂S(t)

d` · (u×B)−
∮
∂S(t)

d` · (u×B)

= 0. (IV.13)

In words, the magnetic flux is conserved in a frame comoving with a fluid element. (This
is analogous to Kelvin’s circulation theorem governing the circulation; cf. (II.39).)

An alternative description of flux freezing can be stated in terms of line tying: fluid
elements that lie on a field line initially will remain on that field line (Lundquist 1951).
See Problem 9 in Problem Set 1.

IV.1.2. Ideal MHD induction equation
Using a particular vector identity (see §II.3.1), the ideal MHD induction equation may

be written in the following form:

∂B

∂t
=∇× (u×B) = −u ·∇B +B ·∇u−B∇·u. (IV.14)

Each of the terms on the right-hand side has a physical meaning. The first indicates that
the magnetic field is advected (carried around by) the fluid flow; when placed on the
left-hand side, we obtain the Lagrangian derivative of the magnetic field, DB/Dt. In this
Lagrangian frame, the magnetic field can evolve because of two effects. The second term
on the right-hand side, B ·∇u, represents stretching of the magnetic field: if the fluid
velocity has a gradient along the direction of the magnetic field, different parts of the
field line will be carried along at different velocities, causing the field line to stretch. The
final term, −B∇·u, corresponds to compression or rarefaction of the magnetic field.
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Indeed, with the continuity equation giving −∇·u = D ln ρ/Dt, we see that co-moving
increases (decreases) in the fluid density go hand-in-hand with increases (decreases) in
the magnetic-field strength.

A rarely publicized but useful form of the induction equation (IV.14) is obtained by
defining the magnetic-field unit vector b̂ .

= B/B and writing separate equations for it
and the magnetic-field strength B:

D lnB

Dt
=
(
b̂b̂− I

)
:∇u and

Db̂

Dt
=
(
I − b̂b̂

)
:
(
b̂ ·∇u

)
. (IV.15)

These may come in handy one day. . .

IV.1.3. Lorentz force: Magnetic pressure and tension

We now know that perfectly conducting fluids advect, stretch, and compress magnetic
fields while conserving magnetic flux. What is the effect of that flux on the dynamics of
the fluid element itself? For that, we revisit the Lorentz force in the MHD momentum
equation (IV.9), and use Ampère’s law to cast the current density in terms of the magnetic
field:

fM =
j

c
×B =

(∇×B)×B
4π

= −∇B
2

8π
+
B ·∇B

4π
, (IV.16)

where to obtain the final equality we have used a well-known vector identity (see §II.3.1).
Because ∇·B = 0, this can also be written as

fM = −∇·
[
B2

8π
I − BB

4π

]
= −∇·M , (IV.17)

which implicitly defines the ‘Maxwell stress’, M . This form of the magnetic force suggests
a kind of elasticity. To further see this, use the definition of the magnetic unit vector
b̂
.
= B/B to write

B ·∇B = Bb̂ ·∇(Bb̂) = B2(b̂ ·∇b̂) + b̂b̂ ·∇B
2

2
.

Using this in (IV.16) and collecting terms yields

fM =
B2

4π
(b̂ ·∇b̂)−

(
I − b̂b̂

)
·∇B

2

8π
. (IV.18)

The first term here corresponds to a curvature force, with b̂ ·∇b̂ .
= κ being the curvature

of the field lines (see the diagram below). Note that 1/|κ| is the radius of curvature. When
a field line is bent, there is a force pointing towards the local center of curvature that
is trying to un-bend the field line and push the plasma towards a lower-energy state in
which the magnetic field is straight. The second term in (IV.18) corresponds to a magnetic
pressure force acting perpendicular to the field (thus the projection of the gradient onto
I − b̂b̂). This term causes the magnetic-field strength to evolve towards being uniform
across itself, again seeking a lower-energy state. Magnetic fields like to be straight and
evenly spaced, and they will coerce the fluid to adopt motions that drive them towards
being straight and evenly spaced.
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IV.1.4. MHD energy equation
In §II.1.3, we derived an evolution equation for the total energy of a neutral fluid

(eq. (II.20)). Here we augment that equation for a perfectly conducting fluid to include
the energy of the magnetic field, B2/8π. Take the ideal MHD induction equation (IV.14)
and dot it with B/4π:

∂

∂t

B2

8π
=
B

4π
·∇× (u×B) =

Bi
4π

εijk
∂

∂xj
(u×B)k

= εijk
∂

∂xj

[
Bi
4π

(u×B)k

]
− εijk(u×B)k

∂

∂xj

Bi
4π

= εijk
∂

∂xj

[
Bi
4π

(u×B)k

]
− εijkεk`mu`Bm

∂

∂xj

Bi
4π

= εijk
∂

∂xj

[
Bi
4π

(u×B)k

]
− (δi`δjm − δimδj`)u`Bm

∂

∂xj

Bi
4π

= −∇·
[
B× (u×B)

4π

]
− uB :∇B

4π
+ u ·∇B

2

8π

=⇒ ∂

∂t

B2

8π
+∇·

[
B× (u×B)

4π

]
= −uB :∇B

4π
+ u ·∇B

2

8π
.

Note that the quantity inside the divergence on the left-hand side of this equation equals
(c/4π)E×B .

= S. . . the Poynting flux! In words, magnetic energy (as measured in the
lab frame; note the partial time derivative) is transported by the Poynting flux. Those
two terms on the right-hand side corresponding to will be cancelled by two equal-and-
opposite terms found in the equation for the kinetic energy, obtained by dotting the
momentum equation (IV.9) with u and focusing on the Lorentz force:

u ·
(
−∇B

2

8π
+
B ·∇B

4π

)
.

Yep, they cancel. So, adding the total hydrodynamic energy equation including these
Lorentz-force contributions to the magnetic energy equation leads to

∂

∂t

(
1

2
ρu2 + e+ ρΦ+

B2

8π

)
+∇·

[(
1

2
ρu2 + γe+ ρΦ

)
u+ S

]
= ρ

∂Φ

∂t
.
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But for the impact of a time-varying gravitational potential, the total MHD energy
E .
= (1/2)ρu2 + e+ ρΦ+B2/8π is conserved.

IV.1.5. Rotating reference frames

In §II.3.3, we examined the nonlinear combination u ·∇u in curvilinear coordinates,
finding additional terms that stemmed from differentiating unit vectors and which
included Coriolis, centrifugal, and tidal accelerations. Here we take a similar look at
the combination u ·∇B −B ·∇u that features in the induction equation (IV.14).

First, use ∂ϕ̂/∂ϕ = −R̂ and ∂R̂/∂ϕ = ϕ̂ in (IV.14) to obtain

∂B

∂t
+B∇·u = (−u ·∇Bi)êi + (B ·∇ui

)
êi +

BϕuR −BRuϕ
R

ϕ̂.

As in §II.5, if we then decompose the fluid velocity as u = v + RΩ(R, z)ϕ̂, where Ω is
an angular velocity, substitute this decomposition into the above equation, and re-group
terms, we have

DBR
Dt

= B ·∇vR −BR∇·v, (IV.19a)

DBϕ
Dt

= B ·∇vϕ −Bϕ∇·v +BR
∂Ω

∂ lnR
+BzR

∂Ω

∂z
+
BϕvR −BRvϕ

R
, (IV.19b)

DBz
Dt

= B ·∇vz −Bz∇·v, (IV.19c)

with D/Dt
.
= ∂/∂t+ v ·∇+Ω ∂/∂ϕ. Note that poloidal magnetic fields are sheared into

the azimuthal direction by differential rotation.

IV.2. Summary: Adiabatic equations of ideal MHD
The adiabatic equations of MHD, written in conservative form, are:

∂ρ

∂t
+∇· (ρu) = 0, (IV.20a)

∂(ρu)

∂t
+∇· (ρuu) = −∇·

[(
P +

B2

8π

)
I − BB

4π

]
− ρ∇Φ, (IV.20b)

∂e

∂t
+∇· (eu) = −P∇·u, (IV.20c)

∂B

∂t
−∇× (u×B) = 0. (IV.20d)

The left-hand sides of these equations express advection of, respectively, the mass density,
the momentum density, the internal energy density, and the magnetic flux by the fluid
velocity; the right-hand sides represents sources and sinks.

If we instead write these equations in terms of the density, fluid velocity, and entropy



32 M. W. Kunz

and make use of the Lagrangian derivative (II.7), we have

Dρ

Dt
= −ρ∇·u, (IV.21a)

Du

Dt
= −1

ρ
∇
(
P +

B2

8π

)
+
B ·∇B
4πρ

−∇Φ, (IV.21b)

Ds

Dt
= 0, (IV.21c)

DB

Dt
= B ·∇u−B∇·u, (IV.21d)

where s .
= (γ − 1)−1 lnPρ−γ .

PART V

Linear theory of MHD waves
Covered by Dr. Zhou, but here are some supplementary hand-written notes. . .
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PART VI

Linear theory of MHD instabilities
Now let’s do some MHD linear instabilities. The program is to set up some equilibria
and then subject them to small-amplitude perturbations in the fluid and magnetic
field. There are a few different ways of doing this and assessing whether the system
is stable or unstable to these perturbations. There’s something called the MHD energy
principle, which will tell you whether a given set of perturbations about some equilib-
rium state will bring the system profitably to a lower energy state. There’s something
called Eulerian perturbation theory, where you subject the equilibrium state to small-
amplitude perturbations, formulate those perturbations in the lab frame, and ask whether
the perturbations oscillate, grow, or decay. And there’s something called Lagrangian
perturbation theory, which is same as Eulerian perturbation theory but is formulated
in the frame of fluid. Each of these has its advantages depending on the equilibrium
state, boundary conditions, and questions being asked. Eulerian perturbation theory is
the most straightforward procedure, so we’ll start there.

VI.1. A primer on instability
Before attacking the MHD equations, though, let’s do something simpler to establish

notation and learn the procedure. Consider the following ordinary differential equation:

d2x

dt2
+ 2ν

dx

dt
+Ω2(x− x0) = 0, (VI.1)

where ν and Ω > 0 are constants. You may recognize this as the equation for a damped
simple harmonic oscillator of natural frequency Ω whose velocity along the x axis is
damped at a rate ν > 0. But let’s not yet commit to any particular sign of ν. First, the
equilibrium state. This is easy: the oscillator is at rest at x = x0. We now displace the
oscillator by a small amount ξ, so that x(t) = x0 + ξ(t). The equation governing this
displacement is

d2ξ

dt2
+ 2ν

dξ

dt
+Ω2ξ = 0. (VI.2)

This equation admits solutions ξ ∼ exp(−iωt), where ω is a complex frequency that
satisfies the dispersion relation

ω2 + 2iων −Ω2 = 0 =⇒ ω = −iν ±
√
Ω2 − ν2. (VI.3)

How do we assess stability? If the imaginary part of ω is positive, then −iω has a positive
real part, and the displacements will grow exponentially in time. If the imaginary part
of ω is negative, then −iω has a negative real part, and this corresponds to exponential
decay of the perturbation. If ω additionally has a real part, then this represents a growing
or decaying oscillator. It’s clear from a cursory glance at the dispersion relation (VI.3)
that the perturbations oscillate and decay exponentially if Ω > ν > 0. If ν > Ω > 0,
then the perturbations decay without oscillating. But if ν < 0, then there is always an
exponentially growing solution. Thus, ν > 0 is the stability criterion for this system.

Now, suppose the equation of interest were instead

d2x

dt2
+ 2ν

dx

dt
+Ω2 sin(x− x0) = 0. (VI.4)

The equilibrium is still the same, but if we want simple harmonic oscillator solutions,
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we’re only go to get them if the displacement is small, i.e., |ξ| � x0. In that case, we can
Taylor expand sin(x − x0) ≈ ξ − ξ3/6 + . . . . To leading order in ξ, we’re back to where
we started with (VI.2). This is linear theory: identify an equilibrium, perturb the system
about that equilibrium, and drop all terms nonlinear in the perturbation amplitude.

Note that we are not solving an initial value problems. We are agnostic about the
initial conditions and only ask whether some disturbance will ultimately grow or decay.
In some situations (most notably, Landau damping), solving the initial value problem
is absolutely essential to obtain the full solution and all the physics involved. But if
you just want to calculate the wave-like response of a system to infinitesimally small
perturbations and learn whether such a response grows or decays, you need only adopt
solutions ∼ exp(−iωt), find the dispersion relation for ω vs k, and examine the sign of its
imaginary part. (The difference is related to a Laplace vs a Fourier transform in time.)

VI.2. Linearized MHD equations
Take (IV.21) and write

ρ = ρ0(r) + δρ(t, r), u = δu(t, r), P = P0(r) + δP (t, r), B = B0(r) + δB(t, r);

i.e., consider a stratified, stationary equilibrium state threaded by a magnetic field and
subject it to perturbations. Never mind how the equilibrium is set up – it is what it is,
and we’ll perturb it. Neglecting all terms quadratic in δ, equations (IV.21) become

∂δρ

∂t
= −(δu ·∇)ρ0 − ρ0(∇· δu), (VI.5)

∂δu

∂t
= − 1

ρ0
∇
(
δP +

B0 · δB
4π

)
+
δρ

ρ20
∇
(
P0 +

B2
0

8π

)
+

(B0 ·∇)δB

4πρ0
+

(δB ·∇)B0

4πρ0
−∇δΦ, (VI.6)

∂δB

∂t
= −(δu ·∇)B0 + (B0 ·∇)δu−B0(∇· δu), (VI.7)

∂

∂t

(
δP

P0
− γ δρ

ρ0

)
= −δu ·∇ ln

P0

ργ0
. (VI.8)

(A quick way of getting these is to think of δ as a differential operator that commutes with
partial differentiation.) Pretty much every gradient of an equilibrium quantity here will
give an instability! (Otherwise, you just get back simple linear waves on a homogeneous
background.) So let’s not analyze this all at once. But I write this system of equations here
for two important reasons: (i) it makes clear that we can adopt solutions δ ∼ exp(−iωt)
for the perturbations, since the equations are linear in the fluctuation amplitudes; (ii) we
can only adopt full plane-wave solutions δ ∼ exp(−iωt + ik · r) if the fluctuations vary
on length scales much smaller than that over which the background varies (the so-called
WKB approximation). Otherwise, we have to worry about the exact structure of the
background gradients and their boundary conditions.

So these are the themes of most linear stability analyses: a WKB approximation
whereby plane-wave solutions are assumed on top of a background state that is slowly
varying, and a focus only on whether fluctuations grow or decay rather than their specific
spatio-temporal evolution from a set of initial conditions.
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VI.3. Lagrangian versus Eulerian perturbations
There is one last thing worth discussing before proceeding with a linear stability

analysis of the MHD equations. Just as there is an Eulerian time derivative and a
Lagrangian time derivative, there is Eulerian perturbation theory and Lagrangian per-
turbation theory. The former, in which perturbations are denoted by a ‘δ’, measures
the change in a quantity at a particular point in space. For example, if the equilibrium
density at r, ρ(r), is changed at time t by some disturbance to become ρ′(t, r), then we
denote the Eulerian perturbation of the density by

ρ′(t, r)− ρ(r) .= δρ� ρ(r). (VI.9)

Again, these perturbations are taken at fixed position. The latter – Lagrangian pertur-
bation theory – concerns the evolution of small perturbations about a background state
within a particular fluid element as it undergoes a displacement ξ. For example, if a
particularly fluid element is displaced from its equilibrium position r to position r + ξ,
then the density of that fluid element changes by an amount

ρ′(t, r + ξ)− ρ(r) .= ∆ρ. (VI.10)

This is a Lagrangian perturbation. To linear order, δ and ∆ are related by

∆ρ ' ρ′(t, r) + ξ ·∇ρ(r)− ρ(r) = δρ+ ξ ·∇ρ. (VI.11)

There are many situations in which a Lagrangian approach is easier to use than an
Eulerian approach; there are also some situations in which doing so is absolutely necessary
(e.g., see §IIIe of Balbus (1988) and §Ic of Balbus & Soker (1989) for discussions of the
perils of using Eulerian perturbations in the context of local thermal instability).

Question: It is possible to have zero Eulerian perturbation and yet have finite Lagrangian
perturbation. What does this mean physically? Is there a physical change in the system?

The Lagrangian velocity perturbation ∆u is given by

∆u
.
=

Dξ

Dt
=

(
∂

∂t
+ u ·∇

)
ξ, (VI.12)

where u is the background velocity. It is the instantaneous time rate of rate of the
displacement of a fluid element, taken relative to the unperturbed flow. Because ∆u =
δu+ ξ ·∇u, we have

δu =
∂ξ

∂t
+ u ·∇ξ − ξ ·∇u. (VI.13)

Note the additional ξ ·∇u term, representing a measurement of the background fluid
gradients by the fluid displacement.

Exercise. Let u = RΩ(R)ϕ̂, as in a differentially rotating disk in cylindrical coordinates.
Consider a displacement ξ with radial and azimuthal components ξR and ξϕ, each depending
upon R and ϕ. Show that

DξR
Dt

= δuR and
Dξϕ
Dt

= δuϕ + ξR
dΩ

d lnR
. (VI.14)

The second term in the latter equation accounts for the stretching of radial displacements into
the azimuthal direction by the differential rotation.
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You can think of δ and ∆ as difference operators, since we’re only working to linear
order in the perturbation amplitude: e.g.,

δ

(
1

ρ

)
=

1

ρ+ δρ
− 1

ρ
' −δρ

ρ2
.

But you must be very careful when mixing Eulerian and Lagrangian points of view. Prove
the following commutation relations:

(i)

[
δ,

∂

∂t

]
= 0;

(ii)

[
δ,

∂

∂xi

]
= 0;

(iii)

[
∆,

∂

∂t

]
= −∂ξj

∂t

∂

∂ξj
;

(iv)

[
∆,

∂

∂xi

]
= −∂ξj

∂xi

∂

∂ξj
;

(v)

[
∆,

D

Dt

]
= 0;

(vi)

[
∆,

D

Dxi

]
= −ξj

∂

∂xj

D

Dt
;

(vii)

[
∂

∂xi
,
D

Dt

]
=
∂uj
∂xi

∂

∂xj
.

You can use these to show that the linearized continuity equation, induction equation,
and internal energy equation are

∆ρ

ρ
= −∇· ξ, (VI.15)

∆B = B ·∇ξ −B∇· ξ, (VI.16)
∆T

T
= −(γ − 1)∇· ξ, (VI.17)

respectively. These forms are particularly useful for linear analyses.
Now to calculate something. . . I’ll start with two simple instabilities, the first of which

(Jeans instability) will be analyzed using Eulerian perturbation theory, and the second
of which (Kelvin–Helmholtz instability) will be analyzed using Lagrangian perturbation
theory. Hopefully you’ll see why one approach is sometimes easier than the other.

VI.4. Self-gravity: Jeans instability
One of the simplest hydrodynamical waves is a small-amplitude sound wave propagat-

ing on an infinite, homogeneous background. Take (IV.21), set B0 = 0, and assume ρ0
and P0 to be constant. The resulting linearized equations are

∂

∂t

δρ

ρ0
= −∇· δu, ∂δu

∂t
= − 1

ρ0
∇δP −∇δΦ, ∂

∂t

(
δP

P0
− γ δρ

ρ0

)
= 0. (VI.18a)

I’ve retained the perturbed gravitational potential δΦ in the second equation, because
we’re going to assume that the fluid is self-gravitating with a potential that obey’s
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Poisson’s equation:8

∇2δΦ = 4πGδρ. (VI.18b)
These equations are linear in δ, and so we may adopt plane-wave solutions,
δ ∼ exp(−iωt+ ik · r). Substituting this form into (VI.18) gives

−iωδρ
ρ0

= −ik · δu, −iωδu = −ik δP
ρ0
− ikδΦ, −iω

(
δP

P0
− γ δρ

ρ0

)
= 0, (VI.19a)

−k2δΦ = 4πGδρ. (VI.19b)
Taking k · the second equation and using the other three yields the dispersion relation

ω
(
ω2 − k2a2 + 4πGρ0

)
= 0, (VI.20)

where a2 .
= γP0/ρ0. The ω = 0 root comes from the perturbed entropy equation, and

corresponds to a isentropic relabelling of the fluid elements; its name is the ‘entropy
mode’. The other two roots correspond to forward- and backward-propagating sound
waves under the influence of their own self-gravity:

ω = ±ka
√
1− 4πGρ0

k2a2
(VI.21)

Self-gravity reduces the speed of the wave for wavenumbers satisfying ka > (4πGρ0)
1/2,

for which the (expansive) pressure force is greater than the (attractive) gravitational
force. At ka = (4πGρ0)

1/2, these two forces balance exactly, and the mode is neutrally
stable. But for ka < (4πGρ0)

1/2, the wavelength is long enough to include a sufficiently
large amount of mass in the perturbation to overwhelm the pressure force. Instability
ensues, and the mode grows without propagating. This is the Jeans instability, named
after Sir James Jeans (although Sir Isaac Newton understood the concept over 200 years
before the calculation).

The critical wavelength

λJ = a

√
π

Gρ0
(VI.22)

is referred to as the Jeans length. For an isothermal (γ = 1) molecular cloud of temper-
ature 10 K, number density 200 cm−3, and mean mass per particle 2.33mp, the Jeans
length is '1.5 pc. The corresponding Jeans mass enclosed within a spherical volume with
λJ as its diameter is

MJ =
π

6
ρ0λ

3
J = 20.3

(
T0

10 K

)3/2(
n

200 cm−3

)−1/2
M�. (VI.23)

Giant molecular clouds with these parameters have typical masses &104 M�, indicating
that more must be going on than just thermal pressure support against self-gravity (see:
magnetic fields and turbulence). Note that MJ =M� at a density n ' 8.2× 104 cm−3.

VI.5. Shear: Kelvin–Helmholtz instability
Consider two uniform fluids separated by a discontinuous interface at z = 0, as in the

figure below:

8Wouldn’t an infinite, homogeneous, self-gravitating fluid collapse under its own weight? Indeed
it would. Ignoring this inconvenience is known as the Jeans swindle. Following Binney &
Tremaine (1987): ‘it is a swindle because in general there is no formal justification for discarding
the unperturbed gravitational field’.
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The fluid above the interface (z > 0) has density ρ2 and equilibrium velocity u0 = U x̂.
The fluid below the interface (z < 0) has density ρ1 and is stationary. (We can always
transform to a frame in which this fluid is stationary, so why not take advantage of that?)
There is a uniform magnetic field B0 = B0xx̂ + B0yŷ oriented parallel to the interface
that permeates all of the fluid, which we take to be perfectly conducting. For simplicity,
take the fluid to be incompressible, viz. ∇·u = 0.

We seek the dispersion relation governing small-amplitude perturbations. It turns out
that this problem is most easily analyzed using Lagrangian perturbations rather than
Eulerian perturbations – the reason being that the interface and the interfacial pressure
between the two fluids must remain continuous as the fluid is perturbed, and it’s easier
to measure this interface in the frame of the fluid element than in the lab frame.

Take the momentum equation in each of the fluids, above and below, and apply the
difference operator ∆ .

= δ + ξ ·∇ while recalling that [∆,D/Dt] = 0 and ∆u = Dξ/Dt:

∆

[
ρ
Du

Dt
= −∇

(
P +

B2

8π

)
+
B ·∇B

4π

]

=⇒ ρ
D2ξ

Dt2
= −∇δ

(
P +

B2

8π

)
+
B0 ·∇δB

4π
, (VI.24)

the form of the right-hand side following because ∇B0 = ∇P0 = 0. Use the linearized
induction equation (VI.16) with ∇B0 = 0, which reads δB = (B0 ·∇)ξ, and rearrange
to obtain [

D2

Dt2
− (B0 ·∇)2

4πρ

]
ξ = −1

ρ
∇δ
(
P +

B2

8π

)
.
= −1

ρ
∇δΠ. (VI.25)

Note that taking the divergence of this equation and using ∇· ξ = 0 (incompressibility)
implies that the total perturbed pressure Π satisfies

∇2δΠ = 0. (VI.26)

With the x and y directions being infinite in extent and the background state possessing
no structure in those directions, we may write δΠ = δΠ(z) exp(ikxx+ ikyy) to find(

−k2 + d2

dz2

)
δΠ(z) = 0 =⇒ δΠ(z) ∝ exp(−|kz|), k ≡

√
k2x + k2y. (VI.27)

The absolute value in the argument of the exponential indicates that the perturbation
must die off as z → ±∞. We may now adopt solutions of the form exp(−iωt) and evaluate
the z component of (VI.25) above and below the interface:[

(−iω + ikxU)2 +
(k ·B0)

2

4πρ2

]
ξz2 = +

1

ρ2
|k|δΠ2, (VI.28a)[

(−iω )2 +
(k ·B0)

2

4πρ1

]
ξz1 = − 1

ρ1
|k|δΠ1, (VI.28b)

respectively. At the interface, ξz1 = ξz2 and ∆Π1 = ∆Π2, i.e., the two fluids must move
together at the interface and their pressures must hold continuous as they are perturbed.
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Because ∇B0 = ∇P0 = 0, the latter implies δΠ1 = δΠ2. Using this information to
match (VI.28a) and (VI.28b) leads to

(ω − kxU)2ρ2 + ω2ρ1 =
(k ·B0)

2

2π
(VI.29)

=⇒ ω =
kxU

2

ρ

ρ1

{
1± i

√
ρ1
ρ2

[
1− (k ·B0)2

πρk2xU
2

]}
(VI.30)

where ρ .
= 2ρ1ρ2/(ρ1 + ρ2) is the reduced mass density. For

(k ·B0)
2

4πρ
<

(
kxU

2

)2

, (VI.31)

the discriminant is positive and there is a growing (and propagating) mode whose growth
rate is proportional to the wavenumber and the velocity shear across the interface. Note
that, for ρ1 = ρ2 = ρ, we have ρ = ρ, and then (VI.30) becomes

ω =
kxU

2

[
1± i

√
1− (k ·B0)2

πρk2xU
2

]
;

for U = 0, this returns a stably propagating shear Alfvén wave, ω = ∓(k ·vA). This
indicates that it is the tension in the magnetic-field lines that is responsible for stabilizing
the instability. That being said, if the magnetic field is oriented such that B0x = 0, then
(VI.31) can always be satisfied for small enough |ky/kx|, no matter how strong is B0y.

The physics is as follows. An upwardly displaced distortion of the interface into
region 2 causes a constriction of the velocity there, and the fluid must move faster to
conserve its mass. But when it moves faster, the pressure must drop (Bernoulli!). The
opposite happens below the interface. Now there is a pressure gradient pushing upwards,
reinforcing the displacement, and the process runs away (unless the magnetic tension
can stabilize the displacements and propagate them away as Alfvén waves). That’s why
pressure perturbations were vital in (VI.25).

Question: Does this instability occur in a simple linear shear flow, e.g., u0 = Szx̂? No! The
proof goes as follows. Drop the magnetic field for simplicity. With u0 = u0(z)x̂, one can show
using ∇· ξ = 0 and the momentum equation that

d2ξz
dz2

− k2xξz =
ku′′0

ω − kxu0
ξz.

Multiply this by ξ∗z (the ‘∗’ denotes the complex conjugate) and integrate between the upper
and lower boundaries z = ±L to obtain∫ L

−L
dz
(
ξ∗zξ
′′
z − k2x|ξz|2

)
=

∫ L

−L
dz

kxu
′′
0

ω − kxu0
|ξz|2.

The first term on the left-hand side may be simplified using integration by parts and assuming
either periodicity or that ξz or ξ′z vanish at the boundaries. Then∫ L

−L
dz
(
−|ξ′z|2 − k2x|ξz|2

)
=

∫ L

−L
dz

kxu
′′
0

ω − kxu0
|ξz|2,

If the system is unstable, then ω must have an imaginary part, ωI. Writing ω = ωR + iωI, the
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imaginary part of the above equation is simply

ωI

∫ L

−L
dz

kxu
′′
0

|ω − kxu0|2
|ξz|2 = 0.

This states that u′′0 must be positive over part of the integration range, and negative over
the remainder, i.e., u′′0 must pass through zero. Thus, instability requires an inflection point
(Rayleigh 1880). (Note that the converse is not true: a velocity profile with an inflection point
is not necessarily unstable.)

VI.6. Buoyancy: Rayleigh–Taylor instability
Using Lagrangian perturbation theory, it is easy to generalize the calculation in the

previous section (§VI.5) to include gravity. Again, let the fluid above the interface (z > 0)
have uniform density ρ2, and the fluid below the interface (z < 0) have uniform density
ρ1. Include the same uniform background magnetic field as before, B0 = B0xx̂+ B0yŷ.
But now place these fluids in a constant gravitational field g = −gẑ, with the gas pressure
either side of the interface satisfying hydrostatic equilibrium in the vertical direction:

g = − 1

ρ1

dP1

dz
= − 1

ρ2

dP2

dz
.

The entire calculation goes through as before, but with the following additions and
modifications. First, we must include the perturbed gravitational force in the momentum
equation (VI.24), viz. ∆(ρg) = −(∆ρ)gẑ. Secondly, because of the background pressure
gradient in each of the fluids, we no longer have that ∆(∇P ) = ∇δP , but rather that
∆(∇P ) = ∇δP + ξ ·∇(∇P ). Using hydrostatic equilibrium, this may equivalently be
written as ∆(∇P ) =∇δP − ξ ·∇(ρgẑ). Making these two changes in (VI.24) leads to

ρ
D2ξ

Dt2
= −∇δ

(
P +

B2

8π

)
+
B0 ·∇δB

4π
− (∆ρ)gẑ + ξ ·∇(ρg). (VI.32)

Despite this extra work, however, those two additional terms cancel one another if
the fluid is incompressible, since then ∆ρ − ξ ·∇ρ .

= δρ = 0. As a result, the only
difference between this calculation and the Kelvin–Helmholtz calculation in §VI.5 is that
the imposition of pressure continuity at the perturbed interface does not imply that
δΠ1 = δΠ2, but rather

∆Π1 = ∆Π2 =⇒ δΠ1 − ξz1ρ1g = δΠ2 − ξz2ρ2g =⇒ δΠ2 − δΠ1 = ξz(ρ2 − ρ1)g.

We may then use this in (VI.28) to jump straight to the dispersion relation (cf. (VI.29))

(ω − kxU)2ρ2 + ω2ρ1 =
(k ·B0)

2

2π
+ |k|g(ρ1 − ρ2), (VI.33)

whose solutions are (cf. (VI.30))

ω =
kxU

2

ρ

ρ1

{
1± i

√
ρ1
ρ2

[
1 +

2|k|g
k2xU

2

ρ2 − ρ1
ρ

− (k ·B0)2

πρk2xU
2

]}
. (VI.34)

By design, this has both Kelvin–Helmholtz and Rayleigh–Taylor in it; let’s set U = 0 to
eliminate the former, in which case

ω = ±i

√
|k|g ρ2 − ρ1

ρ1 + ρ2
− (k ·B0)2

2π(ρ1 + ρ2)
(VI.35)
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This equation states that linear instability requires ρ2 > ρ1 (heavy on top, light on the
bottom), with the difference between the densities being large enough for the destabilizing
pressure gradient (Bernoulli!) to overcome the stabilizing magnetic tension. Note that,
if B0 is not oriented along the interface, no amount of magnetic field can stabilize the
system.

VI.7. Buoyancy: Convective (Schwarzschild) instability
Next up: stratification. Henceforth, ignore self-gravity. Suppose our plasma is immersed

in a constant, externally imposed gravitational field g = −gẑ and that its thermal-
pressure gradient balances the gravitational acceleration to produce a stationary, equi-
librium state. Ignoring for the moment magnetic fields, this hydrostatic equilibrium is
described by the equation

1

ρ0

dP0

dz
= g = const, (VI.36)

where ρ0 = ρ0(z). The hydrodynamic equations linearized about this equilibrium are

∂

∂t

δρ

ρ0
+∇· δu+ δuz

d ln ρ0
dz

= 0, (VI.37)

∂δu

∂t
= − 1

ρ0
∇δP − δρ

ρ0
gẑ, (VI.38)

∂

∂t

(
δP

P0
− γ δρ

ρ0

)
+ δuz

d

dz
ln
P0

ργ0
= 0. (VI.39)

Solutions to this set of equations are ∝ exp(−iωt):

−iωδρ
ρ0

+∇· δu+ δuz
d ln ρ0
dz

= 0, (VI.40)

−iωδu = − 1

ρ0
∇δP − δρ

ρ0
gẑ, (VI.41)

−iω
(
δP

P0
− γ δρ

ρ0

)
+ δuz

d

dz
ln
P0

ργ0
= 0. (VI.42)

Continued on hand-written notes. . .
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VI.8. Buoyancy: Parker instability
Continued on hand-written notes. . .
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VI.9. Rotation
In §II.5, we wrote down the equations of hydrodynamics in a rotating frame – see

(II.44). Here we do the same for the equations of MHD. With v = u−RΩ(R, z)ϕ̂ and

D

Dt

.
=

∂

∂t
+ v ·∇+Ω

∂

∂ϕ
,

the continuity and force equations are the same,

Dρ

Dt
= −ρ∇·v, (VI.43)

DvR
Dt

= fR + 2Ωvϕ +RΩ2 +
v2ϕ
R
, (VI.44)

Dvϕ
Dt

= fϕ −
κ2

2Ω
vR −R

∂Ω

∂z
vz −

vRvϕ
R

, (VI.45)

Dvz
Dt

= fz, (VI.46)

but with the addition of the Lorentz force:

f = −1

ρ
∇
(
P +

B2

8π

)
+
B ·∇Bi
4πρ

êi +
BRBϕ
4πρR

ϕ̂−
B2
ϕ

4πρR
R̂−∇Φ. (VI.47)

Note the additional geometric terms ∝B2/R; these are tension forces associated with the
bend in the magnetic-field lines as they follow the azimuthal direction. To these equations
we must append the induction equation:

DBR
Dt

= −BR∇·v +B ·∇vR, (VI.48)

DBϕ
Dt

= −Bϕ∇·v +B ·∇vϕ +
∂Ω

∂ lnR
BR +R

∂Ω

∂z
Bz, (VI.49)

DBz
Dt

= −Bz∇·v +B ·∇vz. (VI.50)

With the exception of advection by the differential rotation, the only additions to the
induction equation beyond its more customary Cartesian form appear in its azimuthal
component: + RB ·∇Ω on the right-hand side. This corresponds to stretching of the
flux-frozen magnetic field by the differential rotation.

In the hand-written pages that follow, these equations are used to describe the evolution
of small fluctuations about a homogeneous, differentially rotating disk with Ω = Ω(R),
in which the centrifugal acceleration RΩ2 is balanced by gravity −∂Φ/∂R. If the latter
is dominated by that of a central point mass M , we have Φ = −GM/R and so Ω =
(GM/R3)1/2 – i.e., Keplerian rotation.

Before proceeding, I’ll write down the linearized MHD equations written in cylindrical
coordinates (R,ϕ, z) in a rotating frame with Ω = Ω(R, z)ẑ. The only assumptions here
are that the background magnetic field is uniform, and that the equilibrium state arises
from a balance between the centrifugal force and gravity plus thermal-pressure gradients
(i.e., we allow for density and pressure stratification in the background state). We also
neglect curvature terms of order ∼(v2A/R)(δB/B), as these are small compared to the
other terms unless the toroidal magnetic field is super-thermal by a factor ∼(R/H)1/2,
where H ∼ cs/Ω is the disk thickness and cs is the sound speed – an atypical situation.
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Without further ado. . .(
∂

∂t
+Ω

∂

∂ϕ

)
δρ = −(δv ·∇)ρ− ρ(∇· δv), (VI.51)(

∂

∂t
+Ω

∂

∂ϕ

)
δvR = −1

ρ

∂

∂R

(
δP +

B · δB
4π

)
+
δρ

ρ2
∂P

∂R
+

(B ·∇)δBR
4πρ

− ∂δΦ

∂R

− 2Ωδvϕ, (VI.52)(
∂

∂t
+Ω

∂

∂ϕ

)
δvϕ = − 1

ρR

∂

∂ϕ

(
δP +

B · δB
4π

)
+
δρ

ρ

1

ρR

∂P

∂ϕ
+

(B ·∇)δBϕ
4πρ

− 1

R

∂δΦ

∂ϕ

+
κ2

2Ω
δvR +R

∂Ω

∂z
δvϕ, (VI.53)(

∂

∂t
+Ω

∂

∂ϕ

)
δvz = −

1

ρ

∂

∂z

(
δP +

B · δB
4π

)
+
δρ

ρ2
∂P

∂z
+

(B ·∇)δBz
4πρ

− ∂δΦ

∂z
(VI.54)(

∂

∂t
+Ω

∂

∂ϕ

)
δBR = (B ·∇)δvR −BR(∇· δv), (VI.55)(

∂

∂t
+Ω

∂

∂ϕ

)
δBϕ = (B ·∇)δvϕ −Bϕ(∇· δv) +

∂Ω

∂ lnR
δBR +R

∂Ω

∂z
δBz, (VI.56)(

∂

∂t
+Ω

∂

∂ϕ

)
δBz = (B ·∇)δvz −Bz(∇· δv), (VI.57)(

∂

∂t
+Ω

∂

∂ϕ

)
δσ = −δvR

∂ lnPρ−γ

∂R
− δvz

∂ lnPρ−γ

∂z
, (VI.58)

where δσ .
= δP/P − γδρ/ρ.
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PART VII

Charged particle motion
Covered by Dr. Tolman, but here are some supplementary notes. . .

So far, we have concerned ourselves with the response of fluid elements to both imposed
and self-consistently generated electromagnetic and gravitational fields. But those fluid
elements are composed of charged (and neutral) particles; it would be good to know
how those particles move through phase space. Now, we all know Newton’s equations of
motion for a particle in the presence of electric and magnetic fields:

dr

dt
= v,

dv

dt
=

q

m

[
E(t, r) +

v

c
×B(t, r)

]
. (VII.1)

But solutions to (VII.1) are surprisingly subtle, even in seemingly simple situations. . .

VII.1. Particle motion in uniform electric and magnetic fields
Consider the motion of a single, charged particle. Start by decomposing the particle’s

position into a Larmor position ρ and a guiding-center position R, viz.,

r = ρ+R = −v× b̂
Ω

+R, (VII.2)

where Ω .
= qB/mc is the Larmor frequency:

The Larmor position just oscillates around the guiding center at a rate ϑ̇ ' −Ω (more
on this later). Using this decomposition, let’s begin with something relatively simple:
particle motion in constant electric and magnetic fields.

Rearranging (VII.2) and taking the time derivative,

Ṙ = ṙ − ρ̇

= v +
dv

dt
× b̂

Ω

= v +
q

m

(
E +

v

c
×B

)
× b̂

Ω
(using (VII.1))

= v +
qE× b̂
mΩ

− v⊥

= v‖b̂+
cE×B
B2

.
= v‖b̂+ vE (VII.3)

= parallel streaming of the guiding center+ ‘E cross B drift’

Note that the perpendicular drift is charge independent; ions and electrons drift in the
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same direction with the same speed. Thus, no currents are generated by this type of
guiding-center drift. The physical origin of the E×B drift is the dependence of the
gyroradius of a particle on v⊥, which periodically changes due to acceleration by the
perpendicular component of the electric field:

You’ll see when we study ideal MHD that particles E×B drift in order to stay on a
given magnetic-field line.

For more a general force F , the perpendicular drift is

vF
.
=
F × b̂
mΩ

, (VII.4)

which is generally charge dependent and thus results in currents.

VII.2. Particle motion in a non-uniform magnetic field
Next, let’s keep the uniform electric field, but allow the magnetic field to vary in space.

Equation (VII.3) acquires an additional term due to gradients in the magnetic field along
the particle orbit:

Ṙ = v‖b̂+ vE + v× d

dt

b̂

Ω
. (VII.5)

The final term in (VII.5) includes two new drifts, which can be obtained rigorously using
‘guiding-center theory’ (and we will, in §VII.4). But they can also be obtained quite
readily if you already know their names: ‘curvature drift’ and ‘grad-B drift’. The former
suggests we look at the centrifugal force on a particle as it follows a curved magnetic-field
line:

F c =
mv2‖

rc
r̂c, where r̂c = −rcb̂ ·∇b̂ (VII.6)

with rc being the radius of curvature of the field line. The unit vector r̂c points in the
direction of the curvature vector:

Feeding (VII.6) into (VII.4), we obtain the curvature drift,

vc
.
=
F c× b̂
mΩ

= −
v2‖

Ω
(b̂ ·∇b̂)× b̂. (VII.7)
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Note that it is charge dependent.
As for the ‘grad-B drift’, imagine a magnetic dipole with moment

µ =
1

2
qr× v

c
= −1

2
qρ
v⊥
c
b̂ = −mv

2
⊥

2B

.
= −µb̂, (VII.8)

exposed to an inhomogeneous magnetic field. The force on a dipole is equal to∇(µ ·B) =
−µ∇B, and so (using (VII.4)), there is a drift given by

v∇B
.
=
−µ∇B× b̂

mΩ
=
v2⊥
2Ω
b̂×∇ lnB. (VII.9)

This drift results from the increase (decrease) in the gyroradius of a particle as the
particle enters a region of decreased (increased) magnetic-field strength:

The grad-B drift is also charge dependent.
Note that, in a force-free field configuration with ∇×B ‖ B, we have b̂ ·∇b̂ =
∇⊥ lnB. Thus, from (VII.7) and (VII.9),

vcurv + v∇B =
v2‖ + v2⊥/2

Ω
b̂×∇ lnB.

Averaged over all particles, these drifts are ∼vth(ρ/`B), which is typically (very!) sub-
thermal.

VII.3. Particle motion in a time-dependent electric field
If E has some explicit time dependence, then there is yet another drift called ‘polar-

ization drift’, which can be thought of as being due to an inertial force −m dvE/dt on
the guiding center:

vpol
.
= −dvE

dt
× b̂

Ω
=

1

Ω

c

B

∂E⊥
∂t

. (VII.10)

If an electric field is suddenly switched on in a plasma, the ions will drift faster than the
electrons (!), thus polarizing the plasma. The idea here is that, if the electric field varies
as the particle navigates its gyro-orbit and does not average to zero, the result is a net
shift of the guiding center in the direction of ∂E⊥/∂t for positive charges and in the
opposite direction for negative charges. The simplest way to picture this is to consider
switching on a linearly increasing perpendicular electric field at t = 0:
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Because the ions and electrons have different signs of polarization drift, there is a current
produced:

jpol = ρ
( c
B

)2 ∂E⊥
∂t

, (VII.11)

where ρ .
= mini +mene is the mass density. This current is dominated by the heavier

species (ions), since that species has a larger gyro-period and thus is displaced by a much
larger distance by the changing electric field during each orbit. By analogy with standard
electrodynamics in dielectric media, in which9

jpol =
ε

4π

∂E

∂t
,

we see that the effective permittivity ε = (c/vA)
2, where vA

.
= B/

√
4πρ is the Alfvén

speed. (Polarization current is tied to the propagation of Alfvén waves.) Since we often
have c/vA � 1, most plasmas have ε� 1, i.e., they behave as strongly polarizable media.

VII.4. Guiding-center theory
This is more advanced material. It is a beautiful exercise in asymptotic expansion, but
there isn’t enough time in this school for go through the procedure in detail. I encourage
to you read it on your own and work through the calculations.

There is a systematic way of deriving drifts that are due to the non-constantly of forces
along a particle’s orbit, so long as these forces vary slowly. By that, we mean that the
length scales (`) and time scales (τ) over which the forces vary are long compared to ρ
and Ω−1, respectively:

ρ

`
� 1, (Ωτ)−1 � 1.

To enact this scale hierarchy, we introduce a small parameter,

ε
.
=
ρ

`
∼ (Ωτ)−1,

and expand (VII.1) in powers of ε. Not surprisingly, we will find a fast gyromotion and
a slow guiding-center motion.

9Because of the standard undergraduate training in electromagnetism, you may not be
familiar with dielectrics in Gaussian units. If that’s true, then note the following conventions:
D = E + 4πP

.
= εE

.
= (1 + 4πχe)E.
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Start by writing R .
= r − ρ as before, but now with the Larmor vector defined by

ρ = − (v − vE)× b̂
Ω

. (VII.12)

The reason for separating out vE from the other drifts is that the E×B is not small in
ε. (Indeed, this is why E×B motion plays such a prominent role in MHD.) For ease of
notation, write

w
.
= v − vE , (VII.13)

so that ρ = −w× b̂/Ω. Now, we know that the directions parallel (‖) and perpendicular
(⊥) to the magnetic field behave differently (certainly in the ε� 1 limit), so write

w = v‖b̂+w⊥ = v‖b̂+ w⊥
(
ê1 cosϑ+ ê2 sinϑ

)
, (VII.14)

where ϑ is the gyrophase:

The coordinates (ê1, ê2, b̂) are functions of (t, r) as the particle sweeps around the
changing, inhomogeneous magnetic field. What follows is a gradual shift of the particle
coordinates from (r,v) to (R, v‖, w⊥, ϑ).

Let us first examine the motion of the guiding-center position, which follows from
(VII.1) and (VII.12):

Ṙ = ṙ − ρ̇ = v‖b̂︸︷︷︸
©0

+ vE︸︷︷︸
©0

− dvE
dt
× b̂

Ω︸ ︷︷ ︸
©1

+w× d

dt

b̂

Ω︸ ︷︷ ︸
©1

. (VII.15)

The order in ε of each term (relative to vth) has been noted. To leading order, there is
parallel streaming and the E×B drift. The next-order terms are those dependent upon
spatiotemporal changes in the electromagnetic fields along the particle’s trajectory.

Next, the evolution of the parallel velocity:

v̇‖ =
d

dt
(v · b̂) = q

m
E‖︸ ︷︷ ︸
−1
�� ��

+(vE +w) · db̂
dt︸ ︷︷ ︸

©0

,

where the ordering is given relative to vth/τ . That O(ε−1) term is a problem; it says that
E‖ accelerates particles along field lines on the timescale of a Larmor gyration. Since ions
and electrons are accelerated in opposite directions, this would lead to a rapid charge
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separation, ultimately violating our assumption of slowly varying fields. E‖ must be O(ε):

v̇‖ =
d

dt
(v · b̂) = q

m
E‖︸ ︷︷ ︸
©0

+(vE +w) · db̂
dt︸ ︷︷ ︸

©0

. (VII.16)

Following similar steps, one can also show that

ẇ⊥ = −ê⊥ ·
(
v‖

db̂

dt︸ ︷︷ ︸
©0

+
dvE
dt︸ ︷︷ ︸
©0

)
. (VII.17)

All these terms have clean physical interpretations. Parallel electric fields accelerate
particles along field lines; the plane of the perpendicular drifts tilts as the particles
stream along a varying b̂; and parallel motion can become perpendicular motion if b̂
changes along the orbit.

It’s a bit more work to show that

ϑ̇ = −Ω︸︷︷︸
−1
�� ��
− ê2 ·

dê1
dt︸ ︷︷ ︸
©0

− w⊥× b̂
w2
⊥
·
(
v‖

db̂

dt
+

dvE
dt

)
︸ ︷︷ ︸

©0

, (VII.18)

and so I’ll show you the steps. (It should be obvious that the dominant term is −Ω, i.e.,
ϑ̇ = −Ω +O(ε0) + . . . ) Here are those steps:

dw⊥
dt

=
dw⊥
dt

ê⊥ + w⊥

(
dê1
dt

cosϑ+
dê2
dt

sinϑ

)
+ w⊥(−ê1 sinϑ+ ê2 cosϑ)︸ ︷︷ ︸

= −w⊥× b̂

ϑ̇

= −ê⊥ê⊥ ·
(
v‖

db̂

dt
+

dvE
dt

)
+ w⊥

(
dê1
dt

cosϑ+
dê2
dt

sinϑ

)
− (w⊥× b̂) ϑ̇

=⇒ −w⊥× b̂
w2
⊥
· dw⊥

dt
=

���
���

��
���

���
��:0

(w⊥× b̂) · ê⊥ê⊥
w2
⊥

·
(
v‖

db̂

dt
+

dvE
dt

)
+

(
− ê1 ·

dê2
dt

sin2 ϑ+ ê2 ·
dê1
dt

cos2 ϑ︸ ︷︷ ︸
since ê1 · dê1/dt = ê2 · dê2/dt = 0

)
+ ϑ̇

=⇒ ϑ̇ = −w⊥× b̂
w2
⊥
· dw⊥

dt
− ê2 ·

dê1
dt

(since − ê1 ·dê2/dt = ê2 · dê1/dt)

= −Ω − ê2 ·
dê1
dt
− w⊥× b̂

w2
⊥
·
(
v‖

db̂

dt
+

dvE
dt

)
.

So, we now have the evolution of (R, v‖, w⊥, ϑ), but it’s given in terms of (r,v). To
proceed, we must write the latter in terms of the former.



Kunz Lecture Notes for GPAP School 65

To do that, we Taylor expand about the guiding-center position; e.g.,

b̂(t, r) = b̂(t,R)− w⊥× b̂
Ω

·∇b̂(t,R) + . . . (VII.19)

Also,

d

dt

∣∣∣∣
r,v

=
∂

∂t

∣∣∣∣
R,v‖,w⊥,ϑ

+ Ṙ · ∂
∂R

∣∣∣∣
t,v‖,w⊥,ϑ

+ v̇‖
∂

∂v‖

∣∣∣∣
t,R,w⊥,ϑ

+ ẇ⊥
∂

∂w⊥

∣∣∣∣
t,R,v‖,ϑ

+ ϑ̇
∂

∂ϑ

∣∣∣∣
t,R,v‖,w⊥

. (VII.20)

Henceforth, I’ll be suppressing the argument (t,R) on b̂ and vE and the what’s-held-
fixed labels on the partial derivatives. Using (VII.19) and (VII.20), we must evaluate our
(d/dt)(R, v‖, w⊥, ϑ) order by order in ε.

At O(ε−1), we have ϑ̇ = −Ω, i.e, Larmor gyration. At O(ε0), Ṙ = v‖b̂+ vE , which is
the same as guiding-center motion in constant fields. Next, work on v̇‖ and ẇ⊥. Begin
by noticing that

ϑ̇
∂

∂ϑ
= −Ω ∂

∂ϑ
+O(ε0)

is the biggest term in d/dt (see (VII.20)). Thus,

db̂

dt
=

(
∂

∂t
+ v‖b̂ ·∇+ vE ·∇

)
b̂+Ω

∂

∂ϑ

(
w⊥× b̂
Ω

)
·∇b̂+O(ε), (VII.21)

dvE
dt

=

(
∂

∂t
+ v‖b̂ ·∇+ vE ·∇

)
vE +Ω

∂

∂ϑ

(
w⊥× b̂
Ω

)
︸ ︷︷ ︸

= w⊥

·∇vE +O(ε), (VII.22)

where (to remind you) b̂ and vE are functions of (t,R). (The difference between, say,
b̂(t, r) and b̂(t,R) can be packed into the omitted O(ε) terms.) Using (VII.21) and
(VII.22) in the evolution equations (VII.16) and (VII.17) for v‖ and w⊥, respectively,
gives

dv‖

dt
=
qE‖

m
+
(
vE +w

)
·
(
Db̂

Dt
+w⊥ ·∇⊥b̂

)
, (VII.23)

dw⊥
dt

= −ê⊥ ·
[(

D

Dt
+w⊥ ·∇⊥

)(
v‖b̂+ vE

)]
, (VII.24)

where
D

Dt

.
=

∂

∂t
+
(
v‖b̂+ vE

)
·∇ (VII.25)

is the Lagrangian time derivative in the parallel-streaming and E×B-drifting frame. In
(VII.23) and (VII.24) we find a mix of terms that are independent of ϑ and dependent
upon ϑ. For example, grouping such terms in (VII.23),

dv‖

dt
=

{
qE‖

m
+ vE ·

Db̂

Dt

}
+

{
w ·
(
Db̂

Dt
+w⊥ ·∇⊥b̂

)
+w⊥vE :∇⊥b̂

}
. (VII.26)

To separate the two groups, we introduce the gyro-averaging procedure〈
. . .
〉
R

.
=

1

2π

∮
dϑ
(
. . .
)
, (VII.27)
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where the gyrophase integral is taken at fixed R. The following identities are useful:

〈w〉R = w‖b̂, 〈ww〉R = w2
‖ b̂b̂+

w2
⊥
2

(
I − b̂b̂

)
. (VII.28)

Applying the gyro-average to (VII.26) and using these identities yields

〈
v̇‖
〉
R

=

{
qE‖

m
+ vE ·

Db̂

Dt

}
+

{
w2
⊥
2

(
I − b̂b̂

)
:∇⊥b̂︸ ︷︷ ︸

= −b̂ ·∇ lnB

}

〈
v̇‖
〉
R

=
qE‖

m
+ vE ·

Db̂

Dt
− w2

⊥
2B

b̂ ·∇B (VII.29)

So, guiding-center acceleration along field lines is driven by (1) parallel electric fields,
(2) a fictitious force that accounts for boosting to the non-inertial frame of a varying
vE , and (3) mirroring forces by parallel gradients in the magnetic-field strength. The
interpretation of the second term is aided by noting that

vE ·
Db̂

Dt
= −DvE

Dt
· b̂,

since vE · b̂ = 0. In the third term, you should recognize the combination w2
⊥/2B.

Doing the same for w⊥. . .

dw⊥
dt

= −(ê1 cosϑ+ ê2 sinϑ) ·
(
v‖

Db̂

Dt
+

DvE
Dt

)
− (ê1 cosϑ+ ê2 sinϑ) ·

(
v‖w⊥ ·∇⊥b̂+w⊥ ·∇⊥vE

)
=⇒ 〈ẇ⊥〉R = −

(
〈cosϑw⊥〉R ·∇⊥v‖b̂

)
· ê1 −

(
〈cosϑw⊥〉R ·∇⊥vE

)
· ê1

−
(
〈sinϑw⊥〉R ·∇⊥v‖b̂

)
· ê2 −

(
〈sinϑw⊥〉R ·∇⊥vE

)
· ê2

= −w⊥
2
ê1ê1 :∇⊥v‖b̂−

w⊥
2
ê1ê1 :∇⊥vE

− w⊥
2
ê2ê2 :∇⊥v‖b̂−

w⊥
2
ê2ê2 :∇⊥vE

= −w⊥
2

(
I − b̂b̂

)
:∇v‖b̂−

w⊥
2

(
I − b̂b̂

)
:∇vE

〈ẇ⊥〉R =
v‖w⊥

2B
b̂ ·∇B − w⊥

2

(
I − b̂b̂

)
:∇vE (VII.30)

And, in a similar manner,

〈ϑ̇〉R = −Ω − ê2 ·
Dê1
Dt
−
v‖

2
b̂ ·∇×

(
v‖b̂+ vE

)
(VII.31)

But this one doesn’t really matter – we’ll only ever need the leading-order ϑ̇ = −Ω.
We can also go back and compute the O(ε) terms in Ṙ (see (VII.15)), in order to see
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the appearance of inhomogeneities in the evolution of the guiding center:

〈Ṙ〉R = v‖b̂+ vE −
〈
dvE
dt
× b̂

Ω

〉
R

+

〈
w× d

dt

b̂

Ω

〉
R

= v‖b̂+ vE −
DvE
Dt
× b̂

Ω
+ v‖b̂×

Db̂

Dt
+

〈
w⊥×

(
w⊥×∇⊥

b̂

Ω

)〉
R

= v‖b̂+ vE −
DvE
Dt
× b̂

Ω
+ v‖b̂×

Db̂

Dt

+
w2
⊥
2

[
ê1×

(
ê1×∇

b̂

Ω

)
+ ê2×

(
ê2×∇

b̂

Ω

)]

〈Ṙ〉R =

[
v‖ +

w2
⊥

2Ω
b̂ · (∇× b̂)

]
b̂+ vE +

w2
⊥

2Ω
b̂×∇ lnB + b̂×

(
v‖

Db̂

Dt
+

1

Ω

DvE
Dt

)
(VII.32)

Again, a reminder: every b̂ and vE in these formulae are evaluated at (t,R). From left
to right, we have (1) parallel streaming (including an O(ε) correction to the parallel
velocity), (2) E×B drift, (3) grad-B drift, (4) curvature drift, and (5) polarization
drift.

VII.5. First adiabatic invariant
The equation for 〈ẇ⊥〉R, (VII.30), implies something special. Note that

(
I − b̂b̂

)
:∇vE =∇·

(
cE× b̂
B

)
︸ ︷︷ ︸
use Faraday’s law

−b̂ ·
(
b̂ ·∇cE× b̂

B

)

= −∂ lnB
∂t

− cE ·
(
∇× b̂

B

)
− b̂ ·

(
b̂ ·∇cE× b̂

B

)
︸ ︷︷ ︸

user vector identities to expand

= −∂ lnB
∂t

− cE · (∇× b̂)
B

− cE · (b̂×∇ lnB)

B
− cb̂b̂ :∇(E× b̂)

B︸ ︷︷ ︸
use vector identities to rearrange

= −∂ lnB
∂t

− cE · (∇× b̂)
B︸ ︷︷ ︸

write
E = E‖b̂ + E⊥

− cE× b̂
B︸ ︷︷ ︸

= vE

·∇ lnB +
cE⊥ · (∇× b̂)

B

= −∂ lnB
∂t

−
cE‖b̂ · (∇× b̂)

B︸ ︷︷ ︸
is O(ε) relative
to other terms

−vE ·∇ lnB

= −∂ lnB
∂t

− vE ·∇ lnB +O(ε)



Kunz Lecture Notes for GPAP School 68

And so (VII.30) becomes

〈ẇ⊥〉R =
v‖w⊥

2
b̂ ·∇ lnB − w⊥

2

(
−∂ lnB

∂t
− vE ·∇ lnB

)
+O(ε)

=
w⊥
2

(
∂

∂t
+ v‖b̂ ·∇+ vE ·∇

)
lnB +O(ε)

=
w⊥
2

D lnB

Dt
+O(ε),

which implies

〈µ̇〉R = O(ε) (VII.33)

where µ .
= w2

⊥/2B(t,R). In words, the magnetic moment µ is constant on the time and
length scales of the field variation. Its constantly is telling us that, on these time and
length scales, ϑ is an ignorable coordinate. (This property forms the basis of gyrokinetics.)
More fundamentally, µ conservation is telling us that plasmas are ‘diamagnetic’, that is,
all particle-generated fluxes add to reduce the ambient field. The total change in B is
proportional to the change in the perpendicular kinetic energy of the particle. The greater
the plasma thermal energy, the more it excludes the magnetic field.

For a fluid element containing an ensemble of magnetized particles, µ conservation
implies that the thermal pressure perpendicular to the local magnetic field of that fluid
element P⊥

.
= 〈mw2

⊥/2〉 ∝ nB, where the angle brackets 〈 · 〉 denote the ensemble average.
We’ll return to this important point later in the course.

VII.6. Adiabatic invariance

µ is one of several adiabatic invariants, which are related to the exactly conserved
Poincaré invariants of classical mechanics. Adiabatic invariance is one of the most
important concepts in the plasma physics of weakly collisional plasmas. The invariants
emerge from the periodic motion induced by the magnetic field, and derive from the
Hamiltonian action

∮
℘ · dq around a loop representing nearly periodic motion. µ is

the ‘first adiabatic invariant’ of plasma physics; the corresponding periodic motion is
obviously the gyromotion of a particle about a magnetic field. The canonical momentum
℘ in this case is the particle’ angular momentum, mv⊥ρ; the angular variable ϑ is the q,
the conjugate coordinate. If the particle’s orbit changes slowly, either because ∂t lnB � Ω
or because the particle is drifting slowly into a region of varying field strength and/or
geometry, then the action changes very little.10 You might see a ‘simple’ derivation of µ
conservation in some textbooks, rather different from the guiding-center-theory approach

10How little? Kruskal (1958, 1962) and Northrop (1963b) showed that µ is conserved ‘to
all orders’, meaning that, if µ can be written as an expansion in the small parameter ε,
µ = µ0 + εµ1 + ε2µ2 + . . . , then ∆µ

.
= µ − µ0 = c1 exp(−c2ε), where c1 and c2 are positive

constants of order unity.
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we’ve taken above. It runs something like this:

(∆µ in one orbit) =
∆(mw2

⊥/2)

B
− µ∆B

B
=

1

B

∫ 2π/Ω

0

dt
d

dt

(
1

2
mw2
⊥

)
− µ∆B

B

=
1

B

∫ 2π/Ω

0

dt qw⊥ ·E⊥ − µ
∆B

B

=
q

B

∮
d`⊥ ·E⊥ − µ

∆B

B

= µ
∆B

B
− µ∆B

B
= 0.

The idea is that the electric field associated with the change in the magnetic field
accelerates the particle, increasing its perpendicular energy in such a way that µ is
conserved.

A nice example of adiabatic invariance at work is magnetic mirroring. Imagine a
magnetized particle trapped inside the potential well of a static magnetic bottle:

The energy of the particle is conserved,

ε =
1

2
mv2‖ +

1

2
mv2⊥ = const,

as is its magnetic moment, µ = const. Thus, as the particle moves from its initial position
where the magnetic-field strength is B0 into a region where the field strength is B, its
parallel velocity, initially v‖0, must adjust according to these constraints:

1

2
mv2‖0 + µB0 =

1

2
mv2‖ + µB = ε =⇒ v‖ = ±

√
2

m

(
ε− µB

)
(VII.34)

With ε and µ constant, this establishes a relationship between the parallel velocity of
the particle and the local magnetic-field strength (at the particle’s gyro-center): if B
increases in the particle’s frame, v⊥ must increase by µ conservation, and v‖ must then
decrease by energy conservation. If the particle encounters a strong enough magnetic field
that v‖ → 0, the particle is said to ‘reflect’ off of the strong-field region. The criterion
for reflection is (VII.34) with v‖ = 0:

1

2
mv2‖0 + µ(B0 −B) = 0 =⇒

v‖0

v⊥0
6

√
B

B0
− 1 for confinement (VII.35)

This defines a critical pitch angle separated particles that are trapped inside the magnetic
bottle from those that can escape (the ‘loss cone’):
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Collisions, which break µ, would of course promote the leakage of particles out of the
trapped region.

Now, what if the ends of the mirror were to move slowly?

VII.7. Second adiabatic invariant
Imagine a charged particle confined in a square-well potential:

Assume that the bounce time (i.e., the time required for the particle to transit the mirror,
bounce, and return to its starting point) is much less than the time over which the ends
of the mirror move. There will be an approximately conserved quantity,

J .
=

∮
dsmv‖, (VII.36)

associated with the periodic bounce motion of the guiding center in the evolving mirror.
This integral – the second adiabatic invariant – is taken over the ‘bounce orbit’ of the
guiding center, with the differential ds oriented along the local magnetic-field direction
and the limits being the turning points of the bounce orbit.11 For example, if the mirror
shrinks adiabatically, then v‖ increases.12 Proving this is more involved, and J is typically
a less robust invariant than µ (although it is of crucial importance for the persistence of
the van Allen belts, by ensuring that precessing particles trapped in the Earth’s magnetic
field return to their native field line after circumnavigating the Earth). If you’re interested
in the finer details, consult Northrop (1963a, pg. 294).

VII.8. Third adiabatic invariant
There is yet another adiabatic invariant associated with the periodic motion of charged

particles in a magnetic field, but it often receives much less attention than the first two
because of its lesser utility. The reason is because the associated periodic motion is not
as general as, say, a particle gyrating about a field line. In this case, the approximately
conserved quantity

K .
=

∮
d` ℘φ ' e

∮
d`Aφ = eΦ (VII.37)

is the magnetic flux enclosed within a periodic orbit caused by cross-field drifts. (The
drift velocity vφ is typically small compared to eAφ, thus the ‘'’ in (VII.37).) If the
particle orbit also involves bouncing between two turning points in a magnetic mirror,
then the periodic orbit associated with the drift motion is to be evaluated at the ‘bounce
center’ (just as J is to be evaluated using an orbit of the guiding center). As with all
adiabatic invariants, there is a comparison of time scales that must be done; here, it is

11The canonical momentum here is technically mv‖ + eA‖/c, but the latter (vector-potential)
term representing the momentum associated with the electromagnetic field, once integrated over
the bounce orbit, equals the total amount of magnetic flux enclosed by the orbit (= 0).
12Note that both µ and J are of the form (energy)/(frequency). This is the general form of an
adiabatic invariant. Think of E/ω = ~ (Einstein) or

∮
p dq = nh (Sommerfeld). Einstein, at the

Solray conference in 1911, said that this is the general form of an adiabatic invariant, and that
this is what ought to be quantized.
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between the time scale on which the magnetic field varies and the period of the drift
orbit. In the Earth’s inner magnetosphere, the time for trapped particles with energies
of ∼MeV to circumnavigate the Earth via their cross-field drifts is ∼1 hr, and so any
geomagnetic storms would interfere with K conservation. Again, the separation of time
scales and field geometry required for K conservation is not particularly general, but it
is important to bear in mind that particles like to keep the total magnetic flux constant
within both their gyro-orbits (µ conservation) and their drift orbits (K conservation).

VII.9. Summary of single-particle drifts and their currents
Here is a summary of the single-particle guiding-center drifts that we’ve discussed:

vE =
c

B
E× b̂, v∇B =

w2
⊥

2Ω
b̂×∇ lnB, vc =

v2‖

Ω
b̂× (b̂ ·∇b̂), vpol =

1

Ω

c

B

∂E⊥
∂t

,

where the latter two are part of the more general “acceleration” drift,

b̂

Ω
× D

Dt
(v‖b̂+ vE).

Note that these are all perpendicular to the magnetic field. Later in these notes, we
will make a connection between the single-particle drifts and the magnetohydrodynamic
equations. For that, we actually need one more “drift” – the diamagnetic flow – and
something called the magnetization current. These contributions, neither of which are
associated with true particle drifts, are discussed in the next two sections. But first it
will help to compute the currents associated with the particle drifts and include them
here. As we have already emphasized, the E×B drift is species independent, and thus
contributes no current in a quasi-neutral plasma. What about the others?

To compute the perpendicular currents associated with the particle drifts, j⊥,dr, we
imagine a plasma whose particles’ velocities are distributed according to a distribution
function fα(v) for each species α. The perpendicular current is then obtained by affixing
a species label α to the drifts we computed, multiplying each of them by qα, summing
over species, and integrating over the velocity space after weighting each drift by fα, viz.

j⊥,dr =
∑
α

qα

∫
dv vdr,αfα

=
∑
α

qα

∫
dv

[
w2
⊥

2Ωα
b̂×∇ lnB +

b̂

Ωα
× D

Dt
(v‖b̂+ vE)

]
fα

=
c

B
b̂×∇ lnB

∑
α

∫
dv

1

2
mαw

2
⊥fα +

c

B
b̂× (b̂ ·∇b̂)

∑
α

∫
dvmαv

2
‖fα

+
c

B
b̂×

(
∂b̂

∂t
+ vE ·∇b̂+ b̂ ·∇vE

)∑
α

∫
dvmαv‖fα

+
c

B
b̂×

(
∂vE
∂t

+ vE ·∇vE
)∑

α

∫
dvmαfα. (VII.38)

Each of the above integrals over the distribution function fα have a name:
∫
dvmαfα =

mαnα is the mass density,
∫
dvmαv‖fα = mαnαu‖α is the parallel component of the

bulk momentum density, and∫
dv

1

2
mαw

2
⊥fα = p⊥α,

∫
dvmαv

2
‖fα = p‖α +mαnαu

2
‖α
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are measures of the particle energies perpendicular and parallel to the magnetic-field
direction. Namely, p⊥α (p‖α) measures the energetic content of the random (“thermal”)
motions of the particles of species α in the direction perpendicular (parallel) to the local
magnetic field. Substituting these expressions into (VII.38) yields

B

c
j⊥,dr =

∑
α

p⊥αb̂×∇ lnB +
∑
α

(
p‖α +mαnαu

2
‖α

)
b̂× (b̂ ·∇b̂)

+
∑
α

mαnαb̂×
[
u‖α

∂b̂

∂t
+ u‖αvE ·∇b̂+ u‖αb̂ ·∇vE +

∂vE
∂t

+ vE ·∇vE
]
.

(VII.39)

This may be further simplified using b̂× b̂ = 0 and writing

d

dtα

.
=

∂

∂t
+ uα ·∇, where uα

.
= u‖αb̂+ vE. (VII.40)

The result is that
B

c
j⊥,dr =

∑
α

p⊥αb̂×∇ lnB +
∑
α

p‖αb̂× (b̂ ·∇b̂) +
∑
α

mαnαb̂×
duα
dtα

. (VII.41)

So there are currents associated with the grad-B drift, the curvature drift, and the
acceleration drifts (which include the polarization drift). We’ll return to this formula in
§VII.11 after discussing the magnetization current.

VII.10. Magnetization current
Plasmas are diamagnetic, a fact we pointed out when discussing µ conservation: the

greater the plasma (perpendicular) thermal energy, the more it excludes the magnetic
field. There is a macroscopic current, not caused by single-particle drifts, associated with
this property. Essentially, because a magnetized plasma may be thought of as being com-
posed of magnetic dipoles, each of which being associated with a gyro-orbiting particle,
a plasma may be considered as a magnetic material. From basic electromagnetism, the
current of a magnetic material in which the magnetization is non-uniform is given by
jM = c∇×M , where M is the magnetization per unit volume due to these magnetic
dipoles. The latter may be obtained by integrating up all the magnetic moments of each
of the particles, −µb̂ (see (VII.8)), weighted by the particle distribution function:

M = −b̂
∑
α

∫
dv µαfα = − b̂

B

∑
α

∫
dv

1

2
mαw

2
⊥fα = − b̂

B

∑
α

p⊥α. (VII.42)

The resulting current is

jM = c∇×M = −c∇×
(
b̂

B

∑
α

p⊥α

)
. (VII.43)

The figure below illustrates the origin of this current. In this example, there are more ions
gyrating about the (uniform) magnetic field in the center of the plasma than near the
edge, and so there is a density (and thus pressure) gradient pointing inwards (indicated by
the blue arrows). Therefore, there are more particles whose field-perpendicular velocities
are oriented clockwise along the red dashed line than there are particles whose velocities
are oriented counter-clockwise. The difference results in a current that flows as indicated,
in the b̂×∇n direction. A similar effect occurs if the density of guiding centers is uniform
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but the particles’ perpendicular velocities are larger in some region of space than they
are elsewhere. Alternatively, one may think of the magnetization current in terms of
diamagnetism: if the perpendicular thermal energy of the particles is larger in one region
than in another, the ability of the plasma to exclude magnetic fields is inhomogeneous.
This produces a current.

① Be
① A Q Q Q ①

① a Aina a a

① ①
① ① ① ① Jm

① ① ① ①
A ①
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① a ① A ① a
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VII.11. Total plasma current and the diamagnetic flow
Let us add up all the perpendicular currents we have discussed thus far:

j⊥ = jM + j⊥,dr

= −c∇×
(
b̂

B

∑
α

p⊥α

)
+

c

B

∑
α

p⊥αb̂×∇ lnB +
c

B

∑
α

p‖αb̂× (b̂ ·∇b̂)

+
c

B

∑
α

mαnαb̂×
duα
dtα

. (VII.44)

The first two terms may be combined to yield

B

c
j⊥ = −∇×

(
b̂
∑
α

p⊥α

)
+
∑
α

p‖αb̂× (b̂ ·∇b̂) +
∑
α

mαnαb̂×
duα
dtα

. (VII.45)

This next step is unlikely to be clear to you, but let’s introduce the tensor

Pα = p⊥α
(
I − b̂b̂

)
+ p‖αb̂b̂, (VII.46)

where I is the unit dyadic. (This is the form of the thermal pressure tensor in a magnetized
plasma.) Noting that∇× b̂−b̂ · (b̂ ·∇b̂) = b̂b̂ · (∇× b̂) is parallel to b̂, equation (VII.45)
becomes simply

B

c
j⊥ = b̂×

∑
α

(
∇·Pα +mαnα

duα
dtα

)
. (VII.47)

Taking b̂× (VII.47) and using the vector identity b̂× (b̂×A) = −A⊥, we obtain∑
α

(
mαnα

duα
dtα

+∇·Pα
)
⊥
=
j×B
c

. (VII.48)



Kunz Lecture Notes for GPAP School 74

If this looks familiar to you, congratulations! You know MHD, and now you see how
single-particle drifts and magnetization current fit into the MHD description.

One last thing. The quantity

udia,α
.
=

b̂

Ωα
× ∇·Pα
mαnα

(VII.49)

that appears implicitly in (VII.47) has a name – it is referred to as the diamagnetic flow
velocity of species α.13 It is not a particle drift, but rather refers to net flux of gyrating
particles passing through a reference surface due to an inhomogeneous distribution of
guiding centers.

PART VIII

Kinetic theory of plasmas
If you read Part VII, then you might think plasma physics is solved. At any time, compute
the electromagnetic fields produced by the charged particles, and then use these fields to
evolve the particle phase-space positions using (VII.1), or perhaps to evolve the guiding-
center phase-space positions using (VII.29)–(VII.32). Done. Well, not quite. First, there
are simply too many particles to follow in a real plasma. There are ∼1028 particles in this
room alone. One data dump of r and v for all of these particles would be ∼5× 1017 TB
(!!!) Secondly, we’re not really all that interested in every single particle; we usually want
bulk information, like density, momentum, pressure, heat flux, etc. Thirdly, and perhaps
most importantly, a many-body system like a plasma is chaotic. Even if we could solve all
phase-space trajectories of all the particles given some initial conditions, we would have
to admit that those initial conditions are completely arbitrary, and that infinitesimal
changes to those initial conditions will yield microscopically different results. It’d be a
shame if that mattered, wouldn’t it?

This is where a statistical approach comes in handy: What is the probability that a
particle will have position r and velocity v in some six-dimensional phase-space interval
d3rd3v? How does this probability evolve? Under what conditions is this probabilistic
evolution accurate enough to yield meaningful predictions for a single realization of the
system? Answering these questions is the job of kinetic theory. Think about flipping a
coin. We all know that the odds of getting heads is 50%. But those are the odds – not
very useful is you’re betting your career on a single coin toss. Or even two coin tosses,
or ten. But perhaps very useful if you flip the coin 1028 times and make a wager on the
percentage of tosses that came up heads. Or, if you’re rich and have 1028 coins lying
around, you could flip them all at the same time and count the number of heads as a
fraction of the total. Why kinetic theory works as a predictive theory is that, statistically,
there is no difference between running, say, a particle-in-cell code with 100 particles per
cell many, many, many times each with different initial conditions randomly sampled from
some prescribed distribution, and running the same code just once with 1028 particles
per cell and a single realization of the initial conditions. The statistics you learn from the

13I am deliberately not calling it the “diamagnetic drift velocity”, as some are wont to do. Nothing
is actually drifting, so this moniker makes no sense! Later in this course, we will show that
the diamagnetic flow is what one obtains when Taylor-expanding an equilibrium distribution
f(E , µ,R) that is a function of the particle energy E , magnetic moment µ, and guiding-position
R about the particle position r .

= R+ ρ and computing its first velocity-space moment.



Kunz Lecture Notes for GPAP School 75

first experiment should be an accurate representation of the actual results in the second
experiment.

The trick is actually building a rigorous, predictive kinetic theory of plasmas. Here, I’ll
sketch how one is built, highlighting its assumptions. The finer details are quite advanced,
but can be found in my lecture notes for AST554 at Princeton University.

VIII.1. The Klimontovich equation as a microscopic description of a
plasma

A complete description of a plasma would emerge if one were to have knowledge
of all the coordinates and momenta of all of the constituent particles, as well as the
electromagnetic fields in which they move and which they self-consistently produce. We’ve
already discussed why such a description would be untenable with which to work, but
let us nevertheless adopt this microscopic standpoint and see where it leads.

Start by defining the function

Fα(t, r,v) =

Nα∑
i=1

δ(r −Rαi(t))δ(v − Vαi(t)), (VIII.1)

which completely specifies the positions Rαi(t) and velocities Vαi(t) of Nα particles of
species α as functions of time. Note that

lim
drdv→0

∫
drdv Fα(t, r,v)

is either unity or zero, depending upon whether there is a particle at (r,v) at time t, so
that ∫

drdv Fα(t, r,v) = Nα. (VIII.2)

Thus, the microscopic state of the plasma at any time t would be known if one were
to know Rαi and Vαi at t = 0 and their temporal evolution. Hamilton’s equations of
motion provide us with the latter:

dRαi

dt
= Vαi and

dVαi
dt

=
qα
mα

(
Em +

Vαi
c
×Bm

)
, (VIII.3)

where qα and mα are the charge and mass of species α, and

Em = Em(t,Rαi(t)) and Bm = Bm(t,Rαi(t)) (VIII.4)

are the “microphysical” electric and magnetic fields evaluated at the particle position Rαi

at time t. The adjective “microphysical” here is meant to indicate that Em and Bm are
the fields self-consistently generated by the particles themselves. These satisfy Maxwell’s
equations:

∇×Em = −1

c

∂Bm

∂t
, (VIII.5)

∇×Bm =
1

c

∂Em

∂t
+

4π

c

∑
α

qα

∫
dv vFα(t, r,v), (VIII.6)

∇·Em = 4π
∑
α

qα

∫
dv Fα(t, r,v), (VIII.7)

∇·Bm = 0. (VIII.8)

https://www.astro.princeton.edu/~kunz/Site/AST554/AST554_Kunz_Lecture_Notes.pdf
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Because Maxwell’s equations are linear, we can add to these fields any that may be
externally imposed: Em → Em + Eext and Bm → Bm + Bext. This will be useful for
describing magnetized plasmas threaded by an external magnetic field. Before we proceed
any further, two things are worth noting:

(1) The electric and magnetic fields in (VIII.3) omit the contribution from particle
(αi). In other words, a particle does not interact electromagnetically with itself.

(2) Writing (r,v) and drdv all the time is exhausting. Denote x = (r,v) and dx =
drdv, i.e., x is the phase-space coordinate and dx is a small volume of phase
space. Likewise, Xαi = (Rαi,Vαi).

Now, let us consider how Fα(t,x)
.
= Fα(t, r,v) evolves:

∂Fα
∂t

=
∂

∂t

Nα∑
i=1

δ(x−Xαi(t))

=

Nα∑
i=1

dXαi

dt
· ∂

∂Xαi
δ(x−Xαi(t))

= −
Nα∑
i=1

dXαi

dt
· ∂
∂x

δ(x−Xαi(t))

= −
Nα∑
i=1

{
Vαi ·∇+

qα
mα

[
Em(t,Rαi(t)) +

Vαi
c
×Bm(t,Rαi(t))

]
· ∂
∂v

}
δ(x−Xαi(t))

= −
Nα∑
i=1

{
v ·∇+

qα
mα

[
Em(t, r) +

v

c
×Bm(t, r)

]
· ∂
∂v

}
δ(x−Xαi(t))

= −
{
v ·∇+

qα
mα

[
Em(t, r) +

v

c
×Bm(t, r)

]
· ∂
∂v

} Nα∑
i=1

δ(x−Xαi(t))

= −
{
v ·∇+

qα
mα

[
Em(t, r) +

v

c
×Bm(t, r)

]
· ∂
∂v

}
Fα(t,x)

=⇒
[
∂

∂t
+ v ·∇+

qα
mα

(
Em +

v

c
×Bm

)
· ∂
∂v

]
Fα(t,x) = 0 (VIII.9)

Equation (VIII.9) is called the Klimontovich equation. While it is equivalent to phase-
space conservation, it is not a statistical equation. With proper initial conditions, it
is completely deterministic. Together with Maxwell’s equations (VIII.5)–(VIII.8), the
densities and fields are determined for all time.

The Klimontovich equation (VIII.9) can be thought of as expressing the incompress-
ibility of the substance Fα(t,x) as it moves in phase space: DFα/Dt = 0, where D/Dt
is the phase-space Lagrangian (i.e., comoving) derivative. Nicholson (1983) writes, “is it
any wonder that a point particle is incompressible?” Phase-space trajectories that follow
the characteristics of (VIII.9) and start from a region where Fα = 0 will carry that null
information along with them. Likewise with regions where Fα = 1. Thus, the phase space
is populated in a very choppy way. For that reason, as well as the simple fact that, despite
some mathematics, we haven’t actually simplified anything, the Klimontovich equation
as a description of the plasma is not worth much practical use. It does, however, form
the basis of a statistical description of the plasma. But, for that, we need some kind of
averaging process. . .
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VIII.2. The Liouville (“Leé-ooo-ville”) distribution
Just as the microscopic state of a plasma is completely specified by the coordinates

and momenta of its constituent particles, the statistical properties of the plasma are com-
pletely determined by the probabilistic distribution of said particles. Thus, we introduce
the distribution function PN of the coordinates and momenta of all of the N .

=
∑
αNα

particles in the system. Specifically,

PN
∏
α

dXα1dXα2 . . . dXαNα

gives the probability that, at time t, the phase-space coordinates of the particles of species
α have the values Xα1, Xα2, . . . , XαNα in the range dXα1dXα2 . . . dXαNα . This 6N -
dimensional phase space is called the “Γ space”. The microscopic state of the plasma is
expressed in the Γ space by a point {Xαi}. A few important points:

(1) The system points {Xαi} do not interact with one another and so PN satisfies a
continuity equation of the Liouville kind:

DPN
Dt

.
=
∂PN
∂t

+
∑
α

Nα∑
i=1

dXαi

dt
· ∂PN
∂Xαi

= 0; (VIII.10)

i.e., the probability density is conserved along a characteristic trajectory in phase
space.

(2) Because PN is a probability, we have∫ ∏
α

dXα1dXα2 . . . dXαNα PN
.
=

∫
dXall PN = 1,

where I’ve introduced the shorthand dXall to indicate integration over all of the
Γ space (including all species).

(3) In thermodynamic equilibrium, PN equals the Gibbs distribution

DN
.
=

1

Z
exp

(
−H
T

)
, (VIII.11)

where H = H(Γ ) is the Hamiltonian (kinetic plus potential energy), T is the
(species-independent!) equilibrium temperature (in energy units), and

Z .
=

∫ ∏
α

dXα1 . . . dXαNα exp

(
−H
T

)
(VIII.12)

is the partition function. Plasmas are usually non-equilibrium systems, and so we
will need to know how PN evolves in time from a given starting distribution PN (0).

(4) It is profitable to think of PN in the statistical-mechanics ensemble sense: imagine
N replicas of our plasma, all macroscopically identical but microscopically differ-
ent, with the system points {Xαi} scattered over the Γ space. Then PN can be
defined from

PN
∏
α

dXα1dXα2 . . . dXαNα
.
= lim
N→∞

Ns
N
, (VIII.13)

whereNs is the number of those system points contained in an infinitesimal volume∏
α dXα1 . . . dXαNα in the Γ space around {Xαi}. (Why can we do this for a

plasma? Hint: think about the accuracy of using a statistical description of an N -
body system to describe any one realization of the system. What happens to the
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model’s predictive power when N is not very large?) This codifies mathematically
the experiment mentioned in the introduction to this Part: draw some initial
conditions from a bucket, time advance them, record the outcome; draw another
set of initial conditions from a bucket, time advance them, record the outcome;
draw yet another set. . . do this procedure many, many, many times; then realize
that calculating the mean outcome of all these experiments is statistical the same
as evolving forward in time the probability distribution describing the likelihood
of all possible initial conditions.

VIII.3. Reduced distribution functions
With a probability distribution in hand, we can perform an ensemble average over

all these realizations of the plasma. Each one of these realizations is deterministic,
but the system is stochastic between different realizations. Averaging amongst all these
different realizations will turn our spiky “fine-grained” Fα into the smooth “coarse-
grained” distribution. For example,∫

dXα2 . . . dXαNα

∏
β

dXβ1dXβ2 . . . dXβNβ PN

is the joint probability that particle α1 has coordinates in (Xα1) to (Xα1 + dXα1)
irrespective of the coordinates of particles α2, . . . , αNα, β1, β2, . . . , βNβ , etc. This
reduced distribution function is called the one-particle distribution function. It can be
normalized to one’s tastes. I choose the following:14

fα(t,x)
.
= Nα

∫
dXα2 . . . dXαNα

∏
β

dXβ1dXβ2 . . . dXβNβ PN , (VIII.14)

The operative word here is “irrespective”. Of course the probability of, say, an electron
being at some phase-space position x is impacted by an ion being nearby at x′ ≈ x,
but this information is not is fα. The influence of a near neighbor on the distribution
of a particle is contained in a less reduced description, e.g., the two-particle distribution
function:

fαβ(t,x,x
′)
.
= NαNβ

∫
dXα2 . . . dXαNαdXβ2 . . . dXβNβ

∏
γ

dXγ1dXγ2 . . . dXγNγ PN .

(VIII.15)
Then fαβ(t,x,x′)dxdx′/NαNβ is the joint probability that particle α1 is at x in interval
dx and particle β1 is at x′ in interval dx′, irrespective of all other particles.

Note three things:

(1) The species labels α and β could refer to the same type of particle (α = β), in
which case β1 → α2. (Particles are indistinguishable amongst a species, and so
the exact numerical indices do not matter.) In this case, Nβ → Nα − 1.

(2) The two-particle distribution function fαβ is still a reduced distribution, but, as
opposed to the one-particle distribution function fα, it contains some information

14The reason for the Nα is so that
∫
dv fα(t,x) is the number density nα, a customary

normalization for the one-particle distribution function. Others might introduce a prefactor
V for volume, which makes

∫
dv fα(t,x) equal to the fraction of the mean number density

nα
.
= Nα/V in that volume.
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about two-body interactions. If the particles do not interact, then fαβ = fαfβ , the
product of one-particle distribution functions. . . simple.

(3) One could of course generalize this process. For example, the three-particle distri-
bution function is

fαβγ
.
= NαNβNγ

∫
dXall

dXα1dXβ1dXγ1
PN ; (VIII.16)

the four-particle distribution function is

fαβγδ
.
= NαNβNγNδ

∫
dXall

dXα1dXβ1dXγ1dXδ1
PN ;

and so on.

We combine this machinery with the Klimontovich distribution (VIII.1) as follows.
Each term in Fα =

∑
i δ(x −Xαi) describes the location of a particle in terms of its

initial conditions, and PN describes the probability of a particle having a certain set of
initial conditions, and so the reduced descriptions of PN can be expressed in terms of the
averages of products of Fα over all possible initial conditions. These averages are defined
by

〈G(Fα, Fβ , . . . , Fγ)〉
.
=

∫
dXall PN G(Fα, Fβ , . . . , Fγ). (VIII.17)

Let’s put this to work.

VIII.4. Towards the Vlasov equation
Integrate the Klimontovich distribution (VIII.1) over the Liouville distribution (see

(VIII.17)):

〈Fα(t,x)〉
.
=

Nα∑
i=1

∫
dXall PN δ(x−Xαi(t))

= Nα

∫
dXall PN δ(x−Xα1(t)) (particles are indistinguishable)

= Nα

∫
dXα2 . . . dXαNα

∏
β

dXβ1dXβ2 . . . dXβNβ PN

.
= fα(t,x) (def’n of one-particle distribution function, (VIII.14)).

(VIII.18)

Similarly, the average electromagnetic fields are obtained by averaging the microscopic
fields Em and Bm, which depend upon the positions of the (point-like) particles, over
the probable locations of all of the particles:

E
.
= 〈Em〉 =

∫
dXall PN Em and B

.
= 〈Bm〉 =

∫
dXall PN Bm. (VIII.19)
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Using (VIII.18) and (VIII.19) in the Maxwell equations (VIII.5)–(VIII.8) gives

∇×E = −1

c

∂B

∂t
, (VIII.20)

∇×B =
1

c

∂E

∂t
+

4π

c

∑
α

qα

∫
dv vfα(t, r,v), (VIII.21)

∇·E = 4π
∑
α

qα

∫
dv fα(t, r,v), (VIII.22)

∇·B = 0. (VIII.23)

Simple. This is because Maxwell’s equations are linear.
The difficulty is that the Klimontovich equation (VIII.9) is not. It has a quadratic

nonlinearity, which it what makes it so hard to solve. Let’s see that. The integral of
(VIII.9) over the Liouville distribution is

∂

∂t
〈Fα〉+ v ·∇〈Fα〉+

〈
qα
mα

(
Em +

v

c
×Bm

)
· ∂Fα
∂v

〉
= 0. (VIII.24)

The first two terms in (VIII.24) involve only the one-particle distribution function fα
(see (VIII.18)). The third and final term can be manipulated further by decomposing the
microscopic electromagnetic fields into their statistical means and deviations:

Em = 〈Em〉+ δE
.
= E + δE and Bm = 〈Bm〉+ δB

.
= B + δB. (VIII.25)

The fields E and B are smooth and coarse-grained; they are the “macroscopic” fields
obtained by averaging the microscopic fields over all possible positions of the plasma
particles, weighted by the Liouville distribution. The remainders, δE and δB, are spiky
and fine-grained; they capture the influence of the discrete nature of the particles on
the electromagnetic fields. Using (VIII.25) in the Klimontovich equation (VIII.24) and
likewise writing Fα = fα + δFα, we obtain[

∂

∂t
+ v ·∇+

qα
mα

(
E +

v

c
×B

)
· ∂
∂v

]
fα(t,x) = −

〈
qα
mα

(
δE +

v

c
× δB

)
· ∂δFα
∂v

〉
(VIII.26)

(If there are externally imposed electric and magnetic fields, they can be added to E and
B, respectively.) The one-particle distribution function evolves because particles move
around in configuration space and accelerate in velocity space (the left-hand side), and
because of correlations between discrete particles and spiky electromagnetic fields (the
right-hand side).

Before deciding what to do with the right-side of (VIII.26), recall that, on scales
L & λD, individual particle particles are shielded and what remains are fields due to the
collective action of a large number of particles. Also recall that the Coulomb potential
is long-range, and so the fields decay on distances long compared to the interparticle
spacing (λD � δr). This gives collective behavior: interaction of individual particles with
the mean (“macroscopic”) fields generated by all other particles. This means that the
entire left-hand side of (VIII.26) consists of terms that vary smoothly in phase space,
since it’s entirely insensitive to the discrete nature of the plasma. The right-hand side,
by contrast, is very sensitive, and is ultimately responsible for collisional effects. And
with δE and δB depending on δFα through the Coulomb and Biot-Savart laws, this
right-hand side is quadratic in δF . Yuck.
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VIII.5. Solving the BBGKY hierarchy
The problem is that this quadratic right-hand side of (VIII.26) cannot be expressed

solely in terms of fα, and so we have here what is known as a closure problem. Through
many manipulations (see §§II.4, II.5 of these notes if you’re interested), one can actually
write the right-hand side in terms of the two-particle distribution function fαβ . That may
seem like progress, but the two-particle distribution depends on the three-particle distri-
bution fαβγ , and the three-particle distribution depends on the four-particle distribution
fαβγδ, etc. It never ends. This is called the BBGKY hierarchy, named after Bogoliubov,
Born, Green, Kirkwood, & Yvon (1935–1949).

At this point, it’s worth reiterating the definitions of fα and fαβ . fα is the one-
particle distribution function – the probability that a particle of species α has phase-
space position x at time t in the interval dx regardless of all other particles. No
particle–particle interactions are encoded in fα. fαβ , on the other hand, is the joint
probability that a particle of species α has phase-space position x at time t and a
particle of species β has phase-space position x′ at time t, regardless of all other
particles. Now, suppose all particles were truly uncorrelated (i.e., no collisions). Then
fαβ(t,x,x

′) = fα(t,x)fβ(t,x
′), and the right-hand side of (VIII.26) would vanish. This

would return the Vlasov equation,

ḟα
.
=

[
∂

∂t
+ v ·∇+

qα
mα

(
E +

v

c
×B

)
· ∂
∂v

]
fα(t,x) = 0 (Vlasov equation)

(VIII.27)
Again, the one-particle distribution function evolves because particles move around in
configuration space and accelerate in velocity space, but this time the only interactions
that each particle has with other particles is indirect, through the coarse-grained, smooth,
collective electromagnetic fields.

This suggests that we introduce some function, say, gαβ(t,x,x′), which captures the
difference between fαβ and fαfβ :

fαβ = fαfβ + gαβ . (VIII.28)

This is the first step in what is known as the Mayer cluster (or cumulant) expansion. It
splits the statistically independent pieces of fαβ , which have multiplicative probabilities,
apart from the statistically dependent piece. The difference is the two-particle correlation
function. It’s almost always useful to split off the piece of a joint probability distribution
that corresponds to uncorrelated events. Nicholson (1983) on page 54 of his textbook
has a cute analogy concerning correlated and uncorrelated coin tosses and die rolls. I
prefer Yahtzee: the difference between rolling each die separately versus putting them all
in the can and shaking them all and rolling them all out at the same time, so that their
mutual collisions influence which side of each die faces up when the system comes to
rest. Whatever you prefer, the fact that the right-hand side of (VIII.26) can be written
succinctly in terms of the two-particle correlation function, viz.

ḟα =
∑
β

qαqβ
mα

∫
dx′

∂

∂r

1

|r − r′|
· ∂
∂v

gαβ(t,x,x
′) (VIII.29)

attests to the fact that “collisions” are, in fact, correlations established by Coulomb
interactions in the probabilities that two particles will be found near one another.

There is a natural small parameter in a weakly coupled plasma:

Λ−1
.
= (nλ3D)

−1 ≪ 1; (VIII.30)

https://www.astro.princeton.edu/~kunz/Site/AST554/AST554_Kunz_Lecture_Notes.pdf
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i.e., there are many particles in a Debye sphere. Recall that this also means that the
average potential energy of the plasma is small compared to the average kinetic energy.
To the extent that the potential energy due to interactions can be neglected, the plasma
behaves like an ideal gas; thus, Λ−1 measures the size of departures of the thermodynamic
properties of the plasma from those of an ideal gas.

Before explaining what this means for our BBGKY hierarchy, let us compare this
situation with that of a gas of neutral particles. In that situation, the range of the
interaction force r0 is much smaller than the mean spacing δr of the particles ∼n−1/3.
Then it makes sense to expand particle correlations in the small parameter nr30, and thus
neglect the triple correlation. In other words, particle–particle collisions are sufficiently
rare due to the small cross section that three-body collisions are much rarer than two-
body collisions, with the presence of a third body affecting the collision between two
bodies at an asymptotically small level. In a plasma, by contrast, r0 ≈ λD � n−1/3

implies nr30 � 1. This is because Debye screening limits the range of the interaction
potential, but to a value that is still large compared to the average interparticle separation
(i.e., the Coulomb force is long range compared to the scattering force of direct two-body
collisions, but has its long range attenuated by Debye screening). However, this does
not mean that three-body interactions are more important than two-body interactions,
despite nr30 � 1 for a plasma. This is because, even though a charged particle is
interacting with all the particles in its Debye sphere and thus undergoes ∼Λ simultaneous
Coulomb collisions, such collisions are weak, in the sense that the effect of, say, particle
A on particle B’s orbit is small enough that the collision between particle B and another
particle C is practically unaffected. This is because collisions in an ionized plasma result
in small-angle (rather than large-angle) deflections. Another way of saying this is that the
joint distribution fαβ of two particles in a small volume (n−1 � V � λ3D) is determined
by the many particles outside of the volume rather than by the separation of the two
particles from one another; i.e., fαβ ≈ fαfβ .

What this means for our kinetic theory is that, ultimately, three-particle (and higher)
correlations can be dropped without much consequence, and gαβ can be written in terms
of fα and fβ . This closes the hierarchy, and allows one to write the right-hand side
of (VIII.29) in a relatively simple form that is referred to as the collision operator.
This operator encodes the impact of the discrete nature of charged particles, and the
electric noise generated by this discreteness, on the otherwise smooth trajectories of the
particles. The next section offers a few words on such collisions and what they imply for
the irreversibility of a weakly coupled plasma.

VIII.6. A brief primer on collisions and irreversibility
First, take another look at the Vlasov equation (VIII.27), rewritten here:

ḟα(t,x)
.
=

[
∂

∂t
+ v ·∇+

qα
mα

(
E +

v

c
×B

)
· ∂
∂v

]
fα(t,x) = 0. (VIII.31)

Note that setting t → t′
.
= −t, r → r′

.
= r, v → v′

.
= −v, fα → f ′α

.
= fα(−t, r,−v),

E → E′
.
= E(−t, r), and B → B′

.
= −B(−t, r) in (VIII.31) changes nothing:[

∂

∂t′
+ v′ ·∇′ + qα

mα

(
E′ +

v′

c
×B′

)
· ∂
∂v′

]
f ′α(t

′,x′) = 0.

Thus, the Vlasov–Maxwell set of equations is time-reversible. All information about the
phase-space fluid elements is preserved for all time.
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Next, calculate the evolution of the entropy,

S .
= −

∑
α

∫
dx fα(t,x) ln fα(t,x), (VIII.32)

in a Vlasov plasma:

Ṡ = −
∑
α

∫
dx ḟα

(
1 + ln fα

)
= 0. (VIII.33)

Entropy is constant. What a comforting thought.
Of course, these things aren’t generally true. The world is not time-reversible, no

matter how much we wish it to be so. In dropping

−
〈
qα
mα

(
δE +

v

c
× δB

)
· ∂δFα
∂v

〉
from the right-hand side of the Liouville-averaged Klimontovich equation (see (VIII.26)),
we have lost entropy-increasing collisional dissipation and irreversibility. It’s actually a lot
of work to (rigorously or not) derive the appropriate collision operator, Balescu–Lenard
(Balescu 1960; Lenard 1960) or Landau (Landau 1937), and so I’ll simply write down the
latter, as if it’s entirely obvious from whence it came:

C[fα] =
∑
β

2πq2αq
2
β lnλαβ

mα

∂

∂v
·
∫

dv′U(v − v′) ·
(

1

mα

∂

∂v
− 1

mβ

∂

∂v′

)
fα(v)fβ(v

′),

(VIII.34)
where U(u)

.
= (u2I −uu)/u3 and lnλαβ is the Coulomb logarithm (see the NRL plasma

formulary). The details of all this can be found here. In the meantime, here are some
properties that any rigorously derived collision operator ought to satisfy:

• If fα > 0 at t = 0, then fα > 0 for all time t.

• Particle number is conserved:∫
dvC[fα] = 0 for each α.

• Total momentum is conserved:∑
α

∫
dvmαvC[fα] = 0.

(NB: momentum of each individual species is not conserved. Newton would have
a problem with that.)

• Total kinetic energy is conserved:∑
α

∫
dv

1

2
mαv

2 C[fα] = 0.

(NB: again, this holds only for the entire plasma, not each species by itself.)

• The entropy S (see (VIII.32)) can either increase or remain constant under the
action of the collision operator. It cannot decrease!

• Maxwell distributions for all species with equal temperatures and mean velocities
are a time-independent solution:

fM,α =
nα

π3/2v3thα
exp

(
−|v − u|

2

v2thα

)
, v2thα

.
=

2T

mα

https://www.astro.princeton.edu/~kunz/Site/AST554/AST554_Kunz_Lecture_Notes.pdf
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with the same temperature T and mean velocity u for all α.

• As t→∞, any fα satisfying fα > 0 approaches a Maxwell distribution with equal
temperatures and mean velocities for all species.

It’s left as an exercise to the reader to show that (VIII.34) satisfies all of these properties.
In practice, the Balescu–Lenard and Landau collision operators are rarely used. When

collision aren’t simply thrown out altogether, various simplified operators are chosen,
mostly based on their analytical and/or numerical tractability, but also because some of
them can be obtained rigorously as certain limits of the full Landau operator. Here are
just a few, which are provided mainly so that you recognize them if they ever cross into
your future light cone:

Bhatnagar–Gross–Krook (BGK): C[fα] = −ν(fα − fM,α)

Lenard–Bernstein: C[fα] = ν
∂

∂v
·
[
(v − u)fα︸ ︷︷ ︸

drag

+
v2thα
2

∂fα
∂v︸ ︷︷ ︸

diffusion

]

Lorentz: C[fα] = νL[fα]

where L .
=

1

2

[
∂

∂ξ
(1− ξ2) ∂

∂ξ
+

1

1− ξ2
∂

∂φ2v

]
︸ ︷︷ ︸
velocity pitch-angle diffusion; ξ .

= cos θv

Fokker–Planck: C[fα] = −
∂

∂v
·
[
Aα(v)fα

]
︸ ︷︷ ︸

drag

+
1

2

∂

∂v

∂

∂v
:
[
Bα(v)fα

]
︸ ︷︷ ︸

diffusion

.

The velocity-dependent Fokker–Planck coefficients Aα and Bα are related to the “jump
moments” 〈∆v〉 and 〈∆v∆v〉, which are expectation values for changes and correlations
in particle velocities over a short (but not too short – there is a Markov assumption
involved) interval of time.

VIII.7. Moments of the kinetic equation
Accepting that there is a collision operator – whatever it is – one may proceed to

take moments of the kinetic equation to obtain “fluid” equations. Start with the Vlasov–
Landau equation, repeated here for convenience:

ḟα
.
=
∂fα
∂t

+ v ·∇fα +
qα
mα

(
E +

v

c
×B

)
· ∂fα
∂v

= C[fα].

We could of course add additional forces on the charged particles, such as that due to
gravity, mαg. Since we’ll use quasi-neutrality to eliminate E at some point, let’s do that:

ḟα
.
=
∂fα
∂t

+ v ·∇fα +

[
qα
mα

(
E +

v

c
×B

)
+ g

]
· ∂fα
∂v

= C[fα]. (VIII.35)

Now, v contains both thermal and mean velocities. It is useful to split them apart (e.g.,
because they might have very different magnitudes):

w
.
= v − uα(t, r), (VIII.36)
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where

uα(t, r)
.
=

1

nα

∫
dv vfα, nα(t, r)

.
=

∫
dv fα. (VIII.37)

Enacting this transformation of variables, fα(t, r,v)→ fα(t, r,w), through the use of

∂

∂t

∣∣∣∣
v

=
∂

∂t

∣∣∣∣
w

+
∂w

∂t

∣∣∣∣
v

· ∂
∂w

=
∂

∂t

∣∣∣∣
w

−∂uα
∂t
· ∂
∂w

, (VIII.38)

∂

∂r

∣∣∣∣
v

=
∂

∂r

∣∣∣∣
w

+
∂w

∂r

∣∣∣∣
v

· ∂
∂w

=
∂

∂r

∣∣∣∣
w

−∂uα
∂r
· ∂
∂w

, (VIII.39)

equation (VIII.35) becomes

Dfα
Dtα

+w ·∇fα +

[
qα
mα

(
E +

uα
c
×B

)
+ g − Duα

Dtα︸ ︷︷ ︸
.
= aα(t, r)

+
qα
mα

(w
c
×B

)
−w ·∇uα

]
· ∂fα
∂w

= C[fα], (VIII.40)

where

D

Dtα

.
=

∂

∂t
+ uα ·∇ (VIII.41)

is the Lagrangian time derivative taken in the frame comoving with the mean velocity uα
of species α. The additional acceleration terms in (VIII.40) that result from the frame
transformation, viz. Duα/Dtα and w ·∇uα, are the result of boosting to a time- and
space-dependent frame. The former term is fairly self-explanatory – particles must be
accelerated so as to continue residing in the “fluid element” they comprise, which is itself
being accelerated by various (magneto)hydrodynamic forces that result in Duα/Dtα– but
the latter deserves some discussion. Imagine you are trying to walk at constant velocity
w = wx̂ across several layers of differentially moving conveyor belts with velocities
u = u(x)ŷ, as in the figure below. In your frame (and the frame of the conveyor belts),
your velocity will always be wx̂. But, in the lab frame, your velocity will include the
velocity of the conveyor belts. This means that, extra time you step onto a new conveyor
belt that has some velocity oriented in the y direction that is different from that of the
last conveyor belt, you will be accelerating in the lab frame. That is, your velocity in
the lab frame will change over an interval of time from one conveyor belt to the next.
Mathematically, the figure below corresponds to an acceleration w∆uy/∆x every time
you step from one conveyor belt at position x with velocity uŷ to another conveyor belt
at position x+∆x with velocity (u+∆u)ŷ. The difference between these two points of
view is enacted by adding −w ·∇uα to the acceleration term of (VIII.40).
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× ←wxat→

✓ in conveyor
-belt frame is→T

, always
✓ in lab frame changes by at = E -I a) It = (Wx fax5) It

with every timestap it .

Next, take those moments:

∫
dw (VIII.40) :

D

Dtα�
��

��*
nα∫

dw fα +
���

���
�:0∫

dww ·∇fα + aα ·
�
��

�
��*

0∫
dw

∂fα
∂w

+
qα
mα���

���
��

���:
0∫

dw
(w
c
×B

)
· ∂fα
∂w
−
∫

dw (w ·∇uα) ·
∂fα
∂w︸ ︷︷ ︸

bp
= −(∇·uα)���

�:nα∫
dw fα

=
��

�
��
�*0∫

dwC[fα]

=⇒ Dnα
Dtα

+ nα∇·uα = 0 (continuity equation for species α) (VIII.42)

∫
dwmαw(VIII.40) :

D

Dtα�
���

���:
0∫

dwmαwfα +

∫
dwmαww ·∇fα +mαaα ·

∫
dww

∂fα
∂w︸ ︷︷ ︸

bp
= −nαI

+ qα
���

���
���

���:0∫
dww

(w
c
×B

)
· ∂fα
∂w
−
���

��
���

���
��:0∫

dwmαw(w ·∇uα) ·
∂fα
∂w

=

∫
dwmαwC[fα]

=⇒ ∇·Pα −mαnαaα =

∫
dwmαwC[fα]

.
= Rα (force equation for species α)

(VIII.43)
where

Pα
.
=

∫
dwmαwwfα (VIII.44)



Kunz Lecture Notes for GPAP School 87

is the thermal pressure tensor of species α and Rα is the friction force on species α (recall
Newton’s third law,

∑
αRα = 0). Equation (VIII.43) may of course be rewritten in the

following, perhaps more familiar, form:

mαnα
Duα
Dtα

= qαnα

(
E +

uα
c
×B

)
+mαnαg −∇·Pα +Rα. (VIII.45)

If we sum (VIII.45) over species, the electric-field term vanishes by quasineutrality,∑
α qαnα = 0. Then, defining the total mass density %

.
=
∑
αmαnα and the mean

center-of-mass velocity u .
= %−1

∑
αmαnαuα, equation (VIII.45) implies

%

(
∂

∂t
+ u ·∇

)
u =

j

c
×B + %g −∇·

(
P + D

)
, (VIII.46)

where

j =
∑
α

qαnαuα (VIII.47)

is the current density, P .
=
∑
α Pα is the total pressure tensor, and

D .
=
∑
α

mαnα∆uα∆uα (VIII.48)

is a tensor composed of species drifts relative to the center-of-mass velocity,

∆uα
.
= uα − u. (VIII.49)

(Note that
∑
αmαnα∆uα = 0, by definition.) Returning to those moments. . .∫

dwmαwiwj(VIII.40) :
D

Dtα

∫
dwmαwiwj︸ ︷︷ ︸
= Pα,ij

+

∫
dwmαwiwjw ·∇fα

+mαaα,k
��

���
���:

0∫
dwwiwj

∂fα
∂wk

+

∫
dw qαwiwj

(w
c
×B

)
· ∂fα
∂w︸ ︷︷ ︸

bp
= −

∫
dw qα

[
wi
(w

c
×B

)
j
+
(w

c
×B

)
i
wj

]
fα

= −
qα

mα

(
Pα
c
×B

)
ij

−
qα

mα

(
Pα
c
×B

)
ji

−
∫

dwmαwiwj(w ·∇uα,`)
∂fα
∂w`︸ ︷︷ ︸

bp
= −

∫
dwmα

[
wi(w ·∇uα,j) + (w ·∇uα,i)wj + wiwj(∇·uα)

]
fα

= −(Pα ·∇uα)ij − (Pα ·∇uα)ji − Pα(∇·uα)

=

∫
dwmαwiwjC[fα]. (VIII.50)

Define the heat flux tensor for species α:

Qα
.
=

∫
dwmαwwwfα. (VIII.51)
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Then, equation (VIII.50) becomes

DPα
Dtα

+∇·Qα +
qα
mα

[(
Pα
c
×B

)
+

(
Pα
c
×B

)T]
+
[
(Pα ·∇uα) + (Pα ·∇uα)T

]
+ Pα(∇·uα) =

∫
dwmαwwC[fα], (VIII.52)

where the superscript T denotes the transpose. In component form, (VIII.52) reads

DPα,ij
Dtα

+ (∇·Qα)ij +
qα
mα

(
εjk`Pα,ikB` + εik`Pα,jkB`

)
+
(
δi`Pα,jk + δj`Pα,ik + δk`Pα,ij

)∂uα,`
∂rk

=

∫
dwmαwiwjC[fα]. (VIII.53)

Usually the trace of this equation is taken, with

pα
.
=

1

3
trPα. (VIII.54)

Then (VIII.52) provides an evolutionary equation for the internal energy:

3

2

Dpα
Dtα

+∇· qα + Pα :∇uα +
3

2
pα∇·uα = Qα, (VIII.55)

where

qα
.
=

∫
dw

1

2
mαw

2wfα (VIII.56)

is the conductive heat flux of species α and

Qα
.
=

∫
dw

1

2
mαw

2C[fα] (VIII.57)

is the collisional energy exchange. Further writing

Pα
.
= pαI +Πα, (VIII.58)

where Πα is the viscous stress tensor of species α and using (VIII.42) to replace ∇·uα
in (VIII.55) by d lnnα/dt, the internal energy equation (VIII.55) provides an equation
for the hydrodynamic entropy:

3

2
pα

D

Dtα
ln

pα

n
5/3
α

= −∇· qα −Πα :∇uα +Qα (VIII.59)

Finally, using (VIII.58), the force equation (VIII.45) becomes

mαnα
Duα
Dtα

= qαnα

(
E +

uα
c
×B

)
+mαnαg −∇pα −∇·Πα +Rα (VIII.60)

Clearly, to close the system of hydrodynamic equations (viz., (VIII.42), (VIII.59), and
(VIII.60)), we require (Πα, qα,Rα, Qα) expressed in terms of the lower “fluid” moments
(nα,uα, pα). This is the purpose of what is called the Chapman–Enskog expansion,
which is only possible when the collisional mean free path is much smaller than the
lengthscales of interest (e.g., gradient scales) so that the distribution function fα is nearly
Maxwellian. This will give a tractable kinetic equation, without time variation, which
will close the moment equations and allow evolution on a slow timescale. The result is
magnetohydrodynamics.
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Note that, if we were simply to drop (Πα, qα,Rα, Qα) from the fluid equations above,
we’d have the set

Dnα
Dtα

+ nα∇·uα = 0, (VIII.61)

mαnα
Duα
Dtα

= qαnα

(
E +

uα
c
×B

)
+mαnαg −∇pα, (VIII.62)

3

2
pα

D

Dtα
ln

pα

n
5/3
α

= 0, (VIII.63)

which are just the equations of ideal MHD written out for each species α.

VIII.8. Landau damping via Newton’s 2nd law

Imagine an electron moving along the z axis with speed v0. Slowly turn on a wave-
like electric field: E(t, z) = E0 cos(ωt − kz) eεtẑ, where ω is the frequency as k is the
wavenumber of the wave. The adverb “slowly” is captured by the eεt factor with ε � 1.
We’ll take ε→ +0 at the end of the calculation; its only purpose is to establish an arrow of
time. The goal is to solve perturbatively for the motion of the electron by assuming that
E0 is so small that it changes the electron’s trajectory only a little bit over several wave
periods. The solution illustrates the physical mechanism of Landau damping (Lifshitz &
Pitaevskii 1981).

The equations of motion are

dz

dt
= vz, (VIII.64)

dvz
dt

= − e

me
E0 cos(ωt− kz)eεt. (VIII.65)

The solution to lowest order in E0 is trivial: z(t) = v0t and vz(t) = v0 = const. Write
z(t) = v0t + δz(t) and vz(t) = v0 + δvz(t) and calculate the first-order changes δz and
δvz. Equation (VIII.64) becomes

dδvz
dt

= − e

me
E(t, z(t)) ≈ − e

me
E(t, v0t) = −

eE0

me
Re e[i(ω−kv0)+ε]t. (VIII.66)

Integrating this gives

δvz(t) = −
eE0

me

∫ t

0

dt′Re e[i(ω−kv0)+ε]t
′

= −eE0

me
Re

e[i(ω−kv0)+ε]t − 1

i(ω − kv0) + ε

= −eE0

me

ε eεt cos[(ω − kv0)t]− ε+ (ω − kv0)eεt sin[(ω − kv0)t]
(ω − kv0)2 + ε2

. (VIII.67)
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Integrating again,

δz(t) =

∫ t

0

dt′ δvz(t
′) = −eE0

me

∫ t

0

dt′Re
e[i(ω−kv0)+ε]t − 1

i(ω − kv0) + ε

= −eE0

me

{
Re

e[i(ω−kv0)+ε]t − 1

[i(ω − kv0) + ε]2
− εt

(ω − kv0)2 + ε2

}
= −eE0

me

{
[ε2 − (ω − kv0)2][eεt cos[(ω − kv0)t]− 1] + 2ε (ω − kv0) eεt sin[(ω − kv0)t]

[(ω − kv0)2 + ε2]2

− εt

(ω − kv0)2 + ε2

}
. (VIII.68)

The first-order correction to the electric field evaluated at the particle position is

δE(t, z(t)) = E(t, z(t))− E(t, v0t) = δz(t)
∂E(t, v0t)

∂z
= δz(t) k sin[(ω − kv0)t]E0e

εt,

(VIII.69)
with δz(t) given by (VIII.68). The work done by the field on the electron per unit time is
the power gained by the electron (and thus lost by the wave). Denoting an average over
timescales satisfying ω−1 � t� ε−1 by 〈 · 〉, this power is

P (v0) = −e〈E(t, z(t))vz(t)〉 = −e〈[E(t, v0t) + δE(t, z)][v0 + δvz(t)]〉

= −e
〈
E(t, v0t)v0︸ ︷︷ ︸

vanishes
under

averaging

+E(t, v0t)δvz(t)︸ ︷︷ ︸
only cos2

term survives
averaging

+ δE(t, z(t))v0︸ ︷︷ ︸
only sin2

term survives
averaging

〉
+O(δ2)

≈ e2E2
0

me
e2εt
〈

ε

(ω − kv0)2 + ε2
cos2[(ω − kv0)t] +

2kv0ε(ω − kv0)
[(ω − kv0)2 + ε2]2

sin2[(ω − kv0)t]
〉

=
e2E2

0

2me
e2εt

[
ε

(ω − kv0)2 + ε2
+

2kv0ε(ω − kv0)
[(ω − kv0)2 + ε2]2

]

=⇒ P (v0) =
e2E2

0

2me
e2εt

dχ

dv0
with χ

.
=

εv0
(ω − kv0)2 + ε2

(VIII.70)

If v0 . ω/k (particle lagging the wave), then dχ/dv0 > 0 and so P (v0) > 0, indicating
that energy is being transferred from the field to the electron. The wave damps. If v0 &
ω/k (particle leading the wave), then dχ/dv0 < 0 and so P (v0) < 0, indicating that
energy is being transferred from the electron to the field. The wave grows.

Suppose there is now a distribution of these electrons, F (v0). The total power per unit
volume going into (or out of) this distribution is

P =

∫
dvz F (vz)P (vz) =

e2E2
0

2me
e2εt

∫
dvz F (vz)

dχ

dvz

bp
= −e

2E2
0

2me
e2εt

∫
dvz F

′(vz)χ(vz).

(VIII.71)
Take ε→ +0 and use Plemelj’s formula,

lim
ε→+0

1

x− ζ ∓ iε
= PV

1

x− ζ
± iπδ(x− ζ),
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where PV denotes the principal value and δ(x) is the Dirac delta function, to show that

χ(vz) =
εvz

(ω − kvz)2 + ε2
= − i

2

(
vz

kvz − ω − iε
− vz
kvz − ω + iε

)
→ π

ω

k2
δ(vz − ω/k).

(VIII.72)
Using this limit in (VIII.71) leads to

P = − e2E2
0

2mek2
πωF ′(ω/k) (VIII.73)

If ωF ′(ω/k) < 0 (> 0), there are more resonant particles lagging (leading) the wave than
there are leading (lagging) the wave, resulting in a net transfer of energy to the electrons
(wave). It’s left as an exercise to the reader to show that, for F ′(ω/k) < 0, this power
comes at the expense of the electric energy (i.e., damping), and that, for F (ω/k) > 0,
the energy loss from the electrons goes into growing the electric energy (i.e., instability).



Kunz Lecture Notes for GPAP School 92

REFERENCES

Balbus, Steven A. 1988 On Thermal Instability and Hydrostatic Equilibrium in Cooling
Flows. Astrophys. J. 328, 395.

Balbus, Steven A. & Soker, Noam 1989 Theory of Local Thermal Instability in Spherical
Systems. Astrophys. J. 341, 611.

Balescu, R. 1960 Irreversible Processes in Ionized Gases. Physics of Fluids 3, 52–63.
Kruskal, M. D. 1958 The Gyration of a Charged Particle. Project Matterhorn Publications

and Reports .
Kruskal, M. D. 1962 Asymptotic Theory of Hamiltonian and other Systems with all Solutions

Nearly Periodic. Journal of Mathematical Physics 3, 806–828.
Landau, L. 1937 Transport equation in the case of Coulomb interaction. Zh. Eksper. i

Teoret. Fiz. 7, 203.
Lenard, A. 1960 On Bogoliubov’s kinetic equation for a spatially homogeneous plasma. Annals

of Physics 10, 390–400.
Lifshitz, E. M. & Pitaevskii, L. P. 1981 Physical kinetics.
Lundquist, S. 1951 On the stability of magneto-hydrostatic fields. Phys. Rev. 83, 307.
Nicholson, D. 1983 Introduction to plasma theory . New York: John Wiley & Sons, Inc.
Northrop, T. G. 1963a Adiabatic Charged-Particle Motion. Reviews of Geophysics and Space

Physics 1, 283–304.
Northrop, T. G. 1963b The adiabatic motion of charged particles. New York: Interscience

Publishers.
Rayleigh, J. W. S. 1880 On the stability, or instability, of certain fluid motions. Proc. London

Math. Soc. 11, 57.


	Part I. Introduction to astrophysical plasmas
	I.1. What is a plasma?
	I.2. Fundamental length and time scales
	I.3. Examples of astrophysical and space plasmas
	  Part II. Fundamentals of hydrodynamics
	II.1. The equations of ideal hydrodynamics
	II.1.1. Mass is conserved: The continuity equation
	II.1.2. Newton's second law: The momentum equation
	II.1.3. First law of thermodynamics: The internal energy equation

	II.2. Summary: Adiabatic equations of hydrodynamics
	II.3. Mathematical matters
	II.3.1. Vector identities
	II.3.2. Leibniz's rule and the Lagrangian derivative of integrals
	II.3.3. uu and curvilinear coordinates

	II.4. Vorticity and Kelvin's circulation theorem
	II.5. Rotating reference frames
	II.5.1. Thermal wind equation
	II.5.2. Rossby waves

	  Part III. Fundamentals of plasmas
	III.1. Debye shielding and quasi-neutrality
	III.2. Plasma oscillations
	III.3. Collisional relaxation and the Maxwell–Boltzmann distribution
	  Part IV. Fundamentals of magnetohydrodynamics
	IV.1. The equations of ideal magnetohydrodynamics
	IV.1.1. Flux freezing: Alfvén's theorem
	IV.1.2. Ideal MHD induction equation
	IV.1.3. Lorentz force: Magnetic pressure and tension
	IV.1.4. MHD energy equation
	IV.1.5. Rotating reference frames

	IV.2. Summary: Adiabatic equations of ideal MHD
	  Part V. Linear theory of MHD waves
	  Part VI. Linear theory of MHD instabilities
	VI.1. A primer on instability
	VI.2. Linearized MHD equations
	VI.3. Lagrangian versus Eulerian perturbations
	VI.4. Self-gravity: Jeans instability
	VI.5. Shear: Kelvin–Helmholtz instability
	VI.6. Buoyancy: Rayleigh–Taylor instability
	VI.7. Buoyancy: Convective (Schwarzschild) instability
	VI.8. Buoyancy: Parker instability
	VI.9. Rotation
	  Part VII. Charged particle motion
	VII.1. Particle motion in uniform electric and magnetic fields
	VII.2. Particle motion in a non-uniform magnetic field
	VII.3. Particle motion in a time-dependent electric field
	VII.4. Guiding-center theory
	VII.5. First adiabatic invariant
	VII.6. Adiabatic invariance
	VII.7. Second adiabatic invariant
	VII.8. Third adiabatic invariant
	VII.9. Summary of single-particle drifts and their currents
	VII.10. Magnetization current
	VII.11. Total plasma current and the diamagnetic flow
	  Part VIII. Kinetic theory of plasmas
	VIII.1. The Klimontovich equation as a microscopic description of a plasma
	VIII.2. The Liouville (``Leé-ooo-ville'') distribution
	VIII.3. Reduced distribution functions
	VIII.4. Towards the Vlasov equation
	VIII.5. Solving the BBGKY hierarchy
	VIII.6. A brief primer on collisions and irreversibility
	VIII.7. Moments of the kinetic equation
	VIII.8. Landau damping via Newton's 2nd law

