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Goals - Similar to Yesterday’s Talk
• To review a few things from earlier this week, as doing so can help key ideas to sink in. 

• To ‘de-mystify’ the subject of MHD turbulence for you. 

• To show you a few classic (and broadly useful) results, but also to explain carefully how 
you can recover those results for yourself. 

• This means: 

• Wherever possible, I’m going to show you all the steps. 

• Much of this talk will be dry/mathematical, and there are many cool ideas and results 
that I will not have time to share with you (sorry). 

• But for many of you, this level of talk is not available elsewhere. Conference talks are 
way too advanced for students trying to learn about turbulence, and classes often don’t 
cover this material. So I think you will find this useful, and worth your careful attention.



Outline
1. Quick review of magnetohydrodynamics (MHD) 

2. Elsässer form of the incompressible MHD equations 

3. Linear waves, weak turbulence, and strong turbulence 

4. Weak incompressible MHD turbulence and the anisotropic energy 
cascade 

5. Strong incompressible MHD turbulence and critical balance 

6. Extras



Consider an arbitrary fixed volume  with boundary  
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vectors in bold italic font

 ‘continuity equation’



Suppose a fluid has velocity .  Is    

Consider a fluid element with position  and velocity . Then 
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The quantity  is called the Lagrangian or convective time derivative. 

It’s the time derivative in a frame that follows the fluid.
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Pressure force on an arbitrary fluid element of volume  with boundary : 
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Ω S

F = − ∮S
pdA = − ∮S

pI ⋅ dA = − ∫Ω
∇ ⋅ (pI) d3x = − ∫Ω

∇p d3x

Ω −∇p

Pressure Force Per Unit Volume = − ∇p
dA

Ω

S
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charge of species s,  number density of species s,   average velocity of species sqs = ns = urms =
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In MHD, we drop this displacement-current term on 
the assumption that the characteristic phase 

velocities of fluctuations are much smaller than the 
speed of light.
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For a fixed, metal conductor:   ,  where  is the electric field and  is the 
resistivity 

For a perfectly conducting fluid with velocity , you replace  (the electric field in the lab 

frame) with  (the electric frame in the plasma rest frame)  and set  
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(Ideal means no dissipation — i.e., no resistivity or viscosity) 

 

 

 

3 equations for the 4 variables  we need a 4th equation in order to solve 
for these 4 variables. This is the energy equation. We’ll consider 3 simple examples.
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= ∇ × (u × B)

ρ, u, B, p ⟶

Ideal MHD Equations

Is this a closed set of equations?  I.e., can we solve them to determine the unknowns?
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Adiabatic evolution:     
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Ideal Adiabatic MHD

(A reasonable approximation when the heat flux and other forms of heating/cooling can be neglected.)



 

 

 

,  where the sound speed  is a constant
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(A reasonable approximation at large  and small Mach number . But its simplicity has made it 
extremely useful for understanding MHD turbulence more generally, so we will focus on incompressible MHD 

turbulence today.)
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+ρν∇2u

+η∇2B

Reynolds number      Magnetic Reynolds number Re =
urmsL

ν
Rem =

urmsL
η

correlation length or  
‘outer scale’ of turbulence
L =



Key Ideas About MHD from Earlier Lectures

1. Two types of magnetic forces (per unit volume): the magnetic pressure 

force   and the magnetic-tension force  

2. Flux conservation 

3. Frozen-in law. 

4. Alfvén waves.

−∇
B2

8π
1

4π
B ⋅ ∇B



Outline
1. Quick review of magnetohydrodynamics (MHD) 

2. Elsässer form of the incompressible MHD equations 

3. Linear waves, weak turbulence, and strong turbulence 

4. Weak incompressible MHD turbulence and the anisotropic energy 
cascade 

5. Strong incompressible MHD turbulence and critical balance 

6. Extras: compressible turbulence, inverse cascade of magnetic helicity 
helicity barrier, cosmic-ray scattering by MHD turbulence



   times the induction equation       

   ,       where . 

 times the momentum eq.  

     ,     where    

1
4πρ

∂B
∂t

= ∇ × (u × B)

⟶
∂b
∂t

= ∇ × (u × b) b ≡
B
4πρ

1
ρ

ρ ( ∂
∂t

u + u ⋅ ∇u) = − ∇(p +
B2

8π ) +
1

4π
B ⋅ ∇B

⟶
∂u
∂t

+ u ⋅ ∇u = − ∇Π + b ⋅ ∇b Π ≡
p + (B2/8π)

ρ

Change of Variables



 

 

 

 

   

[∇ × (u × b)]i = ϵijk∂j(ϵklmulbm) = ϵkijϵklm(bm∂jul + ul∂jbm)

[∇ × (u × b)]i = (δilδjm − δimδjl)(bm∂jul + ul∂jbm)

[∇ × (u × b)]i = bj∂jui + ui∂jbj − bi∂juj − uj∂jbi

[∇ × (u × b)]i = [b ⋅ ∇u + u∇ ⋅ b − b∇ ⋅ u − u ⋅ ∇b]i

∂b
∂t

= ∇ × (u × b) = b ⋅ ∇u + u∇ ⋅ b − b∇ ⋅ u − u ⋅ ∇b

∂b
∂t

= b ⋅ ∇u − u ⋅ ∇b

A Simpler Form for the Induction Equation



 

 

 

 

   

[∇ × (u × b)]i = ϵijk∂j(ϵklmulbm) = ϵkijϵklm(bm∂jul + ul∂jbm)

[∇ × (u × b)]i = (δilδjm − δimδjl)(bm∂jul + ul∂jbm)

[∇ × (u × b)]i = bj∂jui + ui∂jbj − bi∂juj − uj∂jbi

[∇ × (u × b)]i = [b ⋅ ∇u + u∇ ⋅ b − b∇ ⋅ u − u ⋅ ∇b]i

∂b
∂t

= ∇ × (u × b) = b ⋅ ∇u + u∇ ⋅ b − b∇ ⋅ u − u ⋅ ∇b

∂b
∂t

= b ⋅ ∇u − u ⋅ ∇b

A Simpler Form for the Induction Equation



 

 

 

 

   

[∇ × (u × b)]i = ϵijk∂j(ϵklmulbm) = ϵkijϵklm(bm∂jul + ul∂jbm)

[∇ × (u × b)]i = (δilδjm − δimδjl)(bm∂jul + ul∂jbm)

[∇ × (u × b)]i = bj∂jui + ui∂jbj − bi∂juj − uj∂jbi

[∇ × (u × b)]i = [b ⋅ ∇u + u∇ ⋅ b − b∇ ⋅ u − u ⋅ ∇b]i

∂b
∂t

= ∇ × (u × b) = b ⋅ ∇u + u∇ ⋅ b − b∇ ⋅ u − u ⋅ ∇b

∂b
∂t

= b ⋅ ∇u − u ⋅ ∇b

A Simpler Form for the Induction Equation

For example, 

δilδjmbm∂jul ↔
3

∑
j=1

3

∑
l=1

3

∑
m=1

δilδjmbm∂jul =
3

∑
j=1

3

∑
l=1

δilbj∂jul =
3

∑
j=1

bj∂jui ↔ bj∂jui



 

 

 

 

   

[∇ × (u × b)]i = ϵijk∂j(ϵklmulbm) = ϵkijϵklm(bm∂jul + ul∂jbm)

[∇ × (u × b)]i = (δilδjm − δimδjl)(bm∂jul + ul∂jbm)

[∇ × (u × b)]i = bj∂jui + ui∂jbj − bi∂juj − uj∂jbi

[∇ × (u × b)]i = [b ⋅ ∇u + u∇ ⋅ b − b∇ ⋅ u − u ⋅ ∇b]i

∂b
∂t

= ∇ × (u × b) = b ⋅ ∇u + u∇ ⋅ b − b∇ ⋅ u − u ⋅ ∇b

∂b
∂t

= b ⋅ ∇u − u ⋅ ∇b

A Simpler Form for the Induction Equation

For example, 

δilδjmbm∂jul ↔
3

∑
j=1

3

∑
l=1

3

∑
m=1

δilδjmbm∂jul =
3

∑
j=1

3

∑
l=1

δilbj∂jul =
3

∑
j=1

bj∂jui ↔ bj∂jui

           analogous to          
3

∑
m=1

δmjbm = bj ∫
∞

−∞
f(x)δ(x − a) dx = f(a)



 

 

 

 

   

[∇ × (u × b)]i = ϵijk∂j(ϵklmulbm) = ϵkijϵklm(bm∂jul + ul∂jbm)

[∇ × (u × b)]i = (δilδjm − δimδjl)(bm∂jul + ul∂jbm)

[∇ × (u × b)]i = bj∂jui + ui∂jbj − bi∂juj − uj∂jbi

[∇ × (u × b)]i = [b ⋅ ∇u + u∇ ⋅ b − b∇ ⋅ u − u ⋅ ∇b]i

∂b
∂t

= ∇ × (u × b) = b ⋅ ∇u + u∇ ⋅ b − b∇ ⋅ u − u ⋅ ∇b

∂b
∂t

= b ⋅ ∇u − u ⋅ ∇b

A Simpler Form for the Induction Equation

For example, 

δilδjmbm∂jul ↔
3

∑
j=1

3

∑
l=1

3

∑
m=1

δilδjmbm∂jul =
3

∑
j=1

3

∑
l=1

δilbj∂jul =
3

∑
j=1

bj∂jui ↔ bj∂jui

           analogous to          
3

∑
m=1

δmjbm = bj ∫
∞

−∞
f(x)δ(x − a) dx = f(a)



 

 

 

 

   

[∇ × (u × b)]i = ϵijk∂j(ϵklmulbm) = ϵkijϵklm(bm∂jul + ul∂jbm)

[∇ × (u × b)]i = (δilδjm − δimδjl)(bm∂jul + ul∂jbm)

[∇ × (u × b)]i = bj∂jui + ui∂jbj − bi∂juj − uj∂jbi

[∇ × (u × b)]i = [b ⋅ ∇u + u∇ ⋅ b − b∇ ⋅ u − u ⋅ ∇b]i

∂b
∂t

= ∇ × (u × b) = b ⋅ ∇u + u∇ ⋅ b − b∇ ⋅ u − u ⋅ ∇b

∂b
∂t

= b ⋅ ∇u − u ⋅ ∇b

A Simpler Form for the Induction Equation



 

 

 

 

   

[∇ × (u × b)]i = ϵijk∂j(ϵklmulbm) = ϵkijϵklm(bm∂jul + ul∂jbm)

[∇ × (u × b)]i = (δilδjm − δimδjl)(bm∂jul + ul∂jbm)

[∇ × (u × b)]i = bj∂jui + ui∂jbj − bi∂juj − uj∂jbi

[∇ × (u × b)]i = [b ⋅ ∇u + u∇ ⋅ b − b∇ ⋅ u − u ⋅ ∇b]i

∂b
∂t

= ∇ × (u × b) = b ⋅ ∇u + u∇ ⋅ b − b∇ ⋅ u − u ⋅ ∇b

∂b
∂t

= b ⋅ ∇u − u ⋅ ∇b

A Simpler Form for the Induction Equation



 

 

 

 

   

[∇ × (u × b)]i = ϵijk∂j(ϵklmulbm) = ϵkijϵklm(bm∂jul + ul∂jbm)

[∇ × (u × b)]i = (δilδjm − δimδjl)(bm∂jul + ul∂jbm)

[∇ × (u × b)]i = bj∂jui + ui∂jbj − bi∂juj − uj∂jbi

[∇ × (u × b)]i = [b ⋅ ∇u + u∇ ⋅ b − b∇ ⋅ u − u ⋅ ∇b]i

∂b
∂t

= ∇ × (u × b) = b ⋅ ∇u + u∇ ⋅ b − b∇ ⋅ u − u ⋅ ∇b

∂b
∂t

= b ⋅ ∇u − u ⋅ ∇b

A Simpler Form for the Induction Equation



 

 

 

 

   

[∇ × (u × b)]i = ϵijk∂j(ϵklmulbm) = ϵkijϵklm(bm∂jul + ul∂jbm)

[∇ × (u × b)]i = (δilδjm − δimδjl)(bm∂jul + ul∂jbm)

[∇ × (u × b)]i = bj∂jui + ui∂jbj − bi∂juj − uj∂jbi

[∇ × (u × b)]i = [b ⋅ ∇u + u∇ ⋅ b − b∇ ⋅ u − u ⋅ ∇b]i

∂b
∂t

= ∇ × (u × b) = b ⋅ ∇u + u∇ ⋅ b − b∇ ⋅ u − u ⋅ ∇b

∂b
∂t

= b ⋅ ∇u − u ⋅ ∇b

A Simpler Form for the Induction Equation



                 

 

  

 

 

∂u
∂t

= − ∇Π + b ⋅ ∇b − u ⋅ ∇u (1)
∂b
∂t

= b ⋅ ∇u − u ⋅ ∇b (2)

z± = u ± b u =
1
2 (z+ + z−) b =

1
2 (z+ − z−) (1) ± (2) yields :

∂z±

∂t
= − ∇Π +

1
4 [(z+ − z−) ⋅ ∇(z+ − z−) − (z+ + z−) ⋅ ∇(z+ + z−) ± (z+ − z−) ⋅ ∇(z+ + z−) ∓ (z+ + z−) ⋅ ∇(z+ − z−)]

∂
∂t

z± = − ∇Π +
1
4 [z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ + z− ⋅ ∇z− − z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ − z− ⋅ ∇z−

±z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ∓ z− ⋅ ∇z− ∓ z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ± z− ⋅ ∇z−]
∂
∂t

z± = − ∇Π +
1
2 [−z+ ⋅ ∇z− − z− ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+]

∂
∂t

z± = − ∇Π − z∓ ⋅ ∇z±

Change to Elsässer Variables z± = u ± b



                 

 

  

 

 

∂u
∂t

= − ∇Π + b ⋅ ∇b − u ⋅ ∇u (1)
∂b
∂t

= b ⋅ ∇u − u ⋅ ∇b (2)

z± = u ± b u =
1
2 (z+ + z−) b =

1
2 (z+ − z−) (1) ± (2) yields :

∂z±

∂t
= − ∇Π +

1
4 [(z+ − z−) ⋅ ∇(z+ − z−) − (z+ + z−) ⋅ ∇(z+ + z−) ± (z+ − z−) ⋅ ∇(z+ + z−) ∓ (z+ + z−) ⋅ ∇(z+ − z−)]

∂
∂t

z± = − ∇Π +
1
4 [z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ + z− ⋅ ∇z− − z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ − z− ⋅ ∇z−

±z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ∓ z− ⋅ ∇z− ∓ z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ± z− ⋅ ∇z−]
∂
∂t

z± = − ∇Π +
1
2 [−z+ ⋅ ∇z− − z− ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+]

∂
∂t

z± = − ∇Π − z∓ ⋅ ∇z±

Change to Elsässer Variables z± = u ± b



                 

 

  

 

 

∂u
∂t

= − ∇Π + b ⋅ ∇b − u ⋅ ∇u (1)
∂b
∂t

= b ⋅ ∇u − u ⋅ ∇b (2)

z± = u ± b u =
1
2 (z+ + z−) b =

1
2 (z+ − z−) (1) ± (2) yields :

∂z±

∂t
= − ∇Π +

1
4 [(z+ − z−) ⋅ ∇(z+ − z−) − (z+ + z−) ⋅ ∇(z+ + z−) ± (z+ − z−) ⋅ ∇(z+ + z−) ∓ (z+ + z−) ⋅ ∇(z+ − z−)]

∂
∂t

z± = − ∇Π +
1
4 [z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ + z− ⋅ ∇z− − z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ − z− ⋅ ∇z−

±z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ∓ z− ⋅ ∇z− ∓ z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ± z− ⋅ ∇z−]
∂
∂t

z± = − ∇Π +
1
2 [−z+ ⋅ ∇z− − z− ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+]

∂
∂t

z± = − ∇Π − z∓ ⋅ ∇z±

Change to Elsässer Variables z± = u ± b



                 

 

  

 

 

∂u
∂t

= − ∇Π + b ⋅ ∇b − u ⋅ ∇u (1)
∂b
∂t

= b ⋅ ∇u − u ⋅ ∇b (2)

z± = u ± b u =
1
2 (z+ + z−) b =

1
2 (z+ − z−) (1) ± (2) yields :

∂z±

∂t
= − ∇Π +

1
4 [(z+ − z−) ⋅ ∇(z+ − z−) − (z+ + z−) ⋅ ∇(z+ + z−) ± (z+ − z−) ⋅ ∇(z+ + z−) ∓ (z+ + z−) ⋅ ∇(z+ − z−)]

∂
∂t

z± = − ∇Π +
1
4 [z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ + z− ⋅ ∇z− − z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ − z− ⋅ ∇z−

±z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ∓ z− ⋅ ∇z− ∓ z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ± z− ⋅ ∇z−]
∂
∂t

z± = − ∇Π +
1
2 [−z+ ⋅ ∇z− − z− ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+]

∂
∂t

z± = − ∇Π − z∓ ⋅ ∇z±

Change to Elsässer Variables z± = u ± b



                 

 

  

 

 

∂u
∂t

= − ∇Π + b ⋅ ∇b − u ⋅ ∇u (1)
∂b
∂t

= b ⋅ ∇u − u ⋅ ∇b (2)

z± = u ± b u =
1
2 (z+ + z−) b =

1
2 (z+ − z−) (1) ± (2) yields :

∂z±

∂t
= − ∇Π +

1
4 [(z+ − z−) ⋅ ∇(z+ − z−) − (z+ + z−) ⋅ ∇(z+ + z−) ± (z+ − z−) ⋅ ∇(z+ + z−) ∓ (z+ + z−) ⋅ ∇(z+ − z−)]

∂
∂t

z± = − ∇Π +
1
4 [z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ + z− ⋅ ∇z− − z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ − z− ⋅ ∇z−

±z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ∓ z− ⋅ ∇z− ∓ z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ± z− ⋅ ∇z−]
∂
∂t

z± = − ∇Π +
1
2 [−z+ ⋅ ∇z− − z− ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+]

∂
∂t

z± = − ∇Π − z∓ ⋅ ∇z±

Change to Elsässer Variables z± = u ± b



                 

 

  

 

 

∂u
∂t

= − ∇Π + b ⋅ ∇b − u ⋅ ∇u (1)
∂b
∂t

= b ⋅ ∇u − u ⋅ ∇b (2)

z± = u ± b u =
1
2 (z+ + z−) b =

1
2 (z+ − z−) (1) ± (2) yields :

∂z±

∂t
= − ∇Π +

1
4 [(z+ − z−) ⋅ ∇(z+ − z−) − (z+ + z−) ⋅ ∇(z+ + z−) ± (z+ − z−) ⋅ ∇(z+ + z−) ∓ (z+ + z−) ⋅ ∇(z+ − z−)]

∂
∂t

z± = − ∇Π +
1
4 [z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ + z− ⋅ ∇z− − z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ − z− ⋅ ∇z−

±z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ∓ z− ⋅ ∇z− ∓ z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ± z− ⋅ ∇z−]
∂
∂t

z± = − ∇Π +
1
2 [−z+ ⋅ ∇z− − z− ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+]

∂
∂t

z± = − ∇Π − z∓ ⋅ ∇z±

Change to Elsässer Variables z± = u ± b

In case you’re not used to this notation: you either take the upper sign 
in every  and , or you take the lower sign in every  and .± ∓ ± ∓

Now expand out all the products



                 

 

  

 

 

∂u
∂t

= − ∇Π + b ⋅ ∇b − u ⋅ ∇u (1)
∂b
∂t

= b ⋅ ∇u − u ⋅ ∇b (2)

z± = u ± b u =
1
2 (z+ + z−) b =

1
2 (z+ − z−) (1) ± (2) yields :

∂z±

∂t
= − ∇Π +

1
4 [(z+ − z−) ⋅ ∇(z+ − z−) − (z+ + z−) ⋅ ∇(z+ + z−) ± (z+ − z−) ⋅ ∇(z+ + z−) ∓ (z+ + z−) ⋅ ∇(z+ − z−)]

∂
∂t

z± = − ∇Π +
1
4 [z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ + z− ⋅ ∇z− − z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ − z− ⋅ ∇z−

±z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ∓ z− ⋅ ∇z− ∓ z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ± z− ⋅ ∇z−]
∂
∂t

z± = − ∇Π +
1
2 [−z+ ⋅ ∇z− − z− ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+]

∂
∂t

z± = − ∇Π − z∓ ⋅ ∇z±

Change to Elsässer Variables z± = u ± b



                 

 

  

 

 

∂u
∂t

= − ∇Π + b ⋅ ∇b − u ⋅ ∇u (1)
∂b
∂t

= b ⋅ ∇u − u ⋅ ∇b (2)

z± = u ± b u =
1
2 (z+ + z−) b =

1
2 (z+ − z−) (1) ± (2) yields :

∂z±

∂t
= − ∇Π +

1
4 [(z+ − z−) ⋅ ∇(z+ − z−) − (z+ + z−) ⋅ ∇(z+ + z−) ± (z+ − z−) ⋅ ∇(z+ + z−) ∓ (z+ + z−) ⋅ ∇(z+ − z−)]

∂
∂t

z± = − ∇Π +
1
4 [z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ + z− ⋅ ∇z− − z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ − z− ⋅ ∇z−

±z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ∓ z− ⋅ ∇z− ∓ z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ± z− ⋅ ∇z−]
∂
∂t

z± = − ∇Π +
1
2 [−z+ ⋅ ∇z− − z− ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+]

∂
∂t

z± = − ∇Π − z∓ ⋅ ∇z±

Change to Elsässer Variables z± = u ± b



                 

 

  

 

 

∂u
∂t

= − ∇Π + b ⋅ ∇b − u ⋅ ∇u (1)
∂b
∂t

= b ⋅ ∇u − u ⋅ ∇b (2)

z± = u ± b u =
1
2 (z+ + z−) b =

1
2 (z+ − z−) (1) ± (2) yields :

∂z±

∂t
= − ∇Π +

1
4 [(z+ − z−) ⋅ ∇(z+ − z−) − (z+ + z−) ⋅ ∇(z+ + z−) ± (z+ − z−) ⋅ ∇(z+ + z−) ∓ (z+ + z−) ⋅ ∇(z+ − z−)]

∂
∂t

z± = − ∇Π +
1
4 [z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ + z− ⋅ ∇z− − z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ − z− ⋅ ∇z−

±z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ∓ z− ⋅ ∇z− ∓ z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ± z− ⋅ ∇z−]
∂
∂t

z± = − ∇Π +
1
2 [−z+ ⋅ ∇z− − z− ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+]

∂
∂t

z± = − ∇Π − z∓ ⋅ ∇z±

Change to Elsässer Variables z± = u ± b



                 

 

  

 

 

∂u
∂t

= − ∇Π + b ⋅ ∇b − u ⋅ ∇u (1)
∂b
∂t

= b ⋅ ∇u − u ⋅ ∇b (2)

z± = u ± b u =
1
2 (z+ + z−) b =

1
2 (z+ − z−) (1) ± (2) yields :

∂z±

∂t
= − ∇Π +

1
4 [(z+ − z−) ⋅ ∇(z+ − z−) − (z+ + z−) ⋅ ∇(z+ + z−) ± (z+ − z−) ⋅ ∇(z+ + z−) ∓ (z+ + z−) ⋅ ∇(z+ − z−)]

∂
∂t

z± = − ∇Π +
1
4 [z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ + z− ⋅ ∇z− − z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ − z− ⋅ ∇z−

±z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ∓ z− ⋅ ∇z− ∓ z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ± z− ⋅ ∇z−]
∂
∂t

z± = − ∇Π +
1
2 [−z+ ⋅ ∇z− − z− ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+]

∂
∂t

z± = − ∇Π − z∓ ⋅ ∇z±

Change to Elsässer Variables z± = u ± b



                 

 

  

 

 

∂u
∂t

= − ∇Π + b ⋅ ∇b − u ⋅ ∇u (1)
∂b
∂t

= b ⋅ ∇u − u ⋅ ∇b (2)

z± = u ± b u =
1
2 (z+ + z−) b =

1
2 (z+ − z−) (1) ± (2) yields :

∂z±

∂t
= − ∇Π +

1
4 [(z+ − z−) ⋅ ∇(z+ − z−) − (z+ + z−) ⋅ ∇(z+ + z−) ± (z+ − z−) ⋅ ∇(z+ + z−) ∓ (z+ + z−) ⋅ ∇(z+ − z−)]

∂
∂t

z± = − ∇Π +
1
4 [z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ + z− ⋅ ∇z− − z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ − z− ⋅ ∇z−

±z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ∓ z− ⋅ ∇z− ∓ z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ± z− ⋅ ∇z−]
∂
∂t

z± = − ∇Π +
1
2 [−z+ ⋅ ∇z− − z− ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+]

∂
∂t

z± = − ∇Π − z∓ ⋅ ∇z±

Change to Elsässer Variables z± = u ± b



                 

 

  

 

 

∂u
∂t

= − ∇Π + b ⋅ ∇b − u ⋅ ∇u (1)
∂b
∂t

= b ⋅ ∇u − u ⋅ ∇b (2)

z± = u ± b u =
1
2 (z+ + z−) b =

1
2 (z+ − z−) (1) ± (2) yields :

∂z±

∂t
= − ∇Π +

1
4 [(z+ − z−) ⋅ ∇(z+ − z−) − (z+ + z−) ⋅ ∇(z+ + z−) ± (z+ − z−) ⋅ ∇(z+ + z−) ∓ (z+ + z−) ⋅ ∇(z+ − z−)]

∂
∂t

z± = − ∇Π +
1
4 [z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ + z− ⋅ ∇z− − z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ − z− ⋅ ∇z−

±z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ∓ z− ⋅ ∇z− ∓ z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ± z− ⋅ ∇z−]
∂
∂t

z± = − ∇Π +
1
2 [−z+ ⋅ ∇z− − z− ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+]

∂
∂t

z± = − ∇Π − z∓ ⋅ ∇z±

Change to Elsässer Variables z± = u ± b



                 

 

  

 

 

∂u
∂t

= − ∇Π + b ⋅ ∇b − u ⋅ ∇u (1)
∂b
∂t

= b ⋅ ∇u − u ⋅ ∇b (2)

z± = u ± b u =
1
2 (z+ + z−) b =

1
2 (z+ − z−) (1) ± (2) yields :

∂z±

∂t
= − ∇Π +

1
4 [(z+ − z−) ⋅ ∇(z+ − z−) − (z+ + z−) ⋅ ∇(z+ + z−) ± (z+ − z−) ⋅ ∇(z+ + z−) ∓ (z+ + z−) ⋅ ∇(z+ − z−)]

∂
∂t

z± = − ∇Π +
1
4 [z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ + z− ⋅ ∇z− − z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ − z− ⋅ ∇z−

±z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ∓ z− ⋅ ∇z− ∓ z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ± z− ⋅ ∇z−]
∂
∂t

z± = − ∇Π +
1
2 [−z+ ⋅ ∇z− − z− ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+]

∂
∂t

z± = − ∇Π − z∓ ⋅ ∇z±

Change to Elsässer Variables z± = u ± b



                 

 

  

 

 

∂u
∂t

= − ∇Π + b ⋅ ∇b − u ⋅ ∇u (1)
∂b
∂t

= b ⋅ ∇u − u ⋅ ∇b (2)

z± = u ± b u =
1
2 (z+ + z−) b =

1
2 (z+ − z−) (1) ± (2) yields :

∂z±

∂t
= − ∇Π +

1
4 [(z+ − z−) ⋅ ∇(z+ − z−) − (z+ + z−) ⋅ ∇(z+ + z−) ± (z+ − z−) ⋅ ∇(z+ + z−) ∓ (z+ + z−) ⋅ ∇(z+ − z−)]

∂
∂t

z± = − ∇Π +
1
4 [z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ + z− ⋅ ∇z− − z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ − z− ⋅ ∇z−

±z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ∓ z− ⋅ ∇z− ∓ z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ± z− ⋅ ∇z−]
∂
∂t

z± = − ∇Π +
1
2 [−z+ ⋅ ∇z− − z− ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+]

∂
∂t

z± = − ∇Π − z∓ ⋅ ∇z±

Change to Elsässer Variables z± = u ± b



                 

 

  

 

 

∂u
∂t

= − ∇Π + b ⋅ ∇b − u ⋅ ∇u (1)
∂b
∂t

= b ⋅ ∇u − u ⋅ ∇b (2)

z± = u ± b u =
1
2 (z+ + z−) b =

1
2 (z+ − z−) (1) ± (2) yields :

∂z±

∂t
= − ∇Π +

1
4 [(z+ − z−) ⋅ ∇(z+ − z−) − (z+ + z−) ⋅ ∇(z+ + z−) ± (z+ − z−) ⋅ ∇(z+ + z−) ∓ (z+ + z−) ⋅ ∇(z+ − z−)]

∂
∂t

z± = − ∇Π +
1
4 [z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ + z− ⋅ ∇z− − z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ − z− ⋅ ∇z−

±z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ∓ z− ⋅ ∇z− ∓ z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ± z− ⋅ ∇z−]
∂
∂t

z± = − ∇Π +
1
2 [−z+ ⋅ ∇z− − z− ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+]

∂
∂t

z± = − ∇Π − z∓ ⋅ ∇z±

Change to Elsässer Variables z± = u ± b



                 

 

  

 

 

∂u
∂t

= − ∇Π + b ⋅ ∇b − u ⋅ ∇u (1)
∂b
∂t

= b ⋅ ∇u − u ⋅ ∇b (2)

z± = u ± b u =
1
2 (z+ + z−) b =

1
2 (z+ − z−) (1) ± (2) yields :

∂z±

∂t
= − ∇Π +

1
4 [(z+ − z−) ⋅ ∇(z+ − z−) − (z+ + z−) ⋅ ∇(z+ + z−) ± (z+ − z−) ⋅ ∇(z+ + z−) ∓ (z+ + z−) ⋅ ∇(z+ − z−)]

∂
∂t

z± = − ∇Π +
1
4 [z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ + z− ⋅ ∇z− − z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ − z− ⋅ ∇z−

±z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ∓ z− ⋅ ∇z− ∓ z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ± z− ⋅ ∇z−]
∂
∂t

z± = − ∇Π +
1
2 [−z+ ⋅ ∇z− − z− ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+]

∂
∂t

z± = − ∇Π − z∓ ⋅ ∇z±

Change to Elsässer Variables z± = u ± b

Choose the upper sign in each  and :    ± ∓ ⟶
∂z+

∂t
= − ∇Π − z− ⋅ ∇z+



                 

 

  

 

 

∂u
∂t

= − ∇Π + b ⋅ ∇b − u ⋅ ∇u (1)
∂b
∂t

= b ⋅ ∇u − u ⋅ ∇b (2)

z± = u ± b u =
1
2 (z+ + z−) b =

1
2 (z+ − z−) (1) ± (2) yields :

∂z±

∂t
= − ∇Π +

1
4 [(z+ − z−) ⋅ ∇(z+ − z−) − (z+ + z−) ⋅ ∇(z+ + z−) ± (z+ − z−) ⋅ ∇(z+ + z−) ∓ (z+ + z−) ⋅ ∇(z+ − z−)]

∂
∂t

z± = − ∇Π +
1
4 [z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ + z− ⋅ ∇z− − z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ − z− ⋅ ∇z−

±z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ∓ z− ⋅ ∇z− ∓ z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ± z− ⋅ ∇z−]
∂
∂t

z± = − ∇Π +
1
2 [−z+ ⋅ ∇z− − z− ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+]

∂
∂t

z± = − ∇Π − z∓ ⋅ ∇z±

Change to Elsässer Variables z± = u ± b

Choose the lower sign in each  and :    ± ∓ ⟶
∂z−

∂t
= − ∇Π − z+ ⋅ ∇z−



                 

 

  

 

 

Both cases can thus be represented via                      

∂u
∂t

= − ∇Π + b ⋅ ∇b − u ⋅ ∇u (1)
∂b
∂t

= b ⋅ ∇u − u ⋅ ∇b (2)

z± = u ± b u =
1
2 (z+ + z−) b =

1
2 (z+ − z−) (1) ± (2) yields :

∂z±

∂t
= − ∇Π +

1
4 [(z+ − z−) ⋅ ∇(z+ − z−) − (z+ + z−) ⋅ ∇(z+ + z−) ± (z+ − z−) ⋅ ∇(z+ + z−) ∓ (z+ + z−) ⋅ ∇(z+ − z−)]

∂
∂t

z± = − ∇Π +
1
4 [z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ + z− ⋅ ∇z− − z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ − z− ⋅ ∇z−

±z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ∓ z− ⋅ ∇z− ∓ z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ± z− ⋅ ∇z−]
∂
∂t

z± = − ∇Π +
1
2 [−z+ ⋅ ∇z− − z− ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+]

∂
∂t

z± = − ∇Π − z∓ ⋅ ∇z±

Change to Elsässer Variables z± = u ± b



                 

 

  

 

 

            Also, 

∂u
∂t

= − ∇Π + b ⋅ ∇b − u ⋅ ∇u (1)
∂b
∂t

= b ⋅ ∇u − u ⋅ ∇b (2)

z± = u ± b u =
1
2 (z+ + z−) b =

1
2 (z+ − z−) (1) ± (2) yields :

∂z±

∂t
= − ∇Π +

1
4 [(z+ − z−) ⋅ ∇(z+ − z−) − (z+ + z−) ⋅ ∇(z+ + z−) ± (z+ − z−) ⋅ ∇(z+ + z−) ∓ (z+ + z−) ⋅ ∇(z+ − z−)]

∂
∂t

z± = − ∇Π +
1
4 [z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ + z− ⋅ ∇z− − z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ − z− ⋅ ∇z−

±z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ∓ z− ⋅ ∇z− ∓ z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ± z− ⋅ ∇z−]
∂
∂t

z± = − ∇Π +
1
2 [−z+ ⋅ ∇z− − z− ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+]

∂
∂t

z± = − ∇Π − z∓ ⋅ ∇z± ∇ ⋅ u = ∇ ⋅ b = ∇ ⋅ z± = 0

Change to Elsässer Variables z± = u ± b



                 

 

  

 

 

            Also, 

∂u
∂t

= − ∇Π + b ⋅ ∇b − u ⋅ ∇u (1)
∂b
∂t

= b ⋅ ∇u − u ⋅ ∇b (2)

z± = u ± b u =
1
2 (z+ + z−) b =

1
2 (z+ − z−) (1) ± (2) yields :

∂z±

∂t
= − ∇Π +

1
4 [(z+ − z−) ⋅ ∇(z+ − z−) − (z+ + z−) ⋅ ∇(z+ + z−) ± (z+ − z−) ⋅ ∇(z+ + z−) ∓ (z+ + z−) ⋅ ∇(z+ − z−)]

∂
∂t

z± = − ∇Π +
1
4 [z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ + z− ⋅ ∇z− − z+ ⋅ ∇z+ − z+ ⋅ ∇z− − z− ⋅ ∇z+ − z− ⋅ ∇z−

±z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ∓ z− ⋅ ∇z− ∓ z+ ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+ ± z− ⋅ ∇z−]
∂
∂t

z± = − ∇Π +
1
2 [−z+ ⋅ ∇z− − z− ⋅ ∇z+ ± z+ ⋅ ∇z− ∓ z− ⋅ ∇z+]

∂
∂t

z± = − ∇Π − z∓ ⋅ ∇z± ∇ ⋅ u = ∇ ⋅ b = ∇ ⋅ z± = 0

Change to Elsässer Variables z± = u ± b



Let   ,  where  is the mean magnetic field, which is a constant. 

Then     ,      where  is the Alfvén velocity, 

and   ,       where    

Substitute this expression into    . Note that  is a constant.  
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• As in our discussion of hydrodynamic turbulence yesterday, the role of the pressure term  is 
simply to cancel out the compressive part of the nonlinear term  to maintain . 

• As ,  the right-hand side of Eq. (1) becomes negligible .   

The solution to this linear advection equation is ,  where  is an arbitrary 
function. This solution describes  ‘fluctuations’ that propagate at velocity . These are linear 
Alfvén waves (covered in more detail in Muni Zhou’s talk). Note:   propagates anti-parallel to , 
and  propagates parallel to .   

• If either  or  vanishes throughout an open region of space, then the nonlinear term vanishes 
throughout that region.  nonlinear interactions (and hence turbulence) arises only from ‘collisions’ 
between counter-propagating waves. 

• The linear solution  is an exact nonlinear solution if . 
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Movie of Colliding Alfvén-Wave Packets

Howes, Verniero, & Klein (2016)



Conservation Laws

 

Take dot product with   

Use    

Integrate over all of space. The pure divergence terms become, via Gauss’s theorem, surface integrals 
at infinite, which vanish because the plasma is confined to a finite volume. We then obtain 

      where      is the energy per unit mass in  fluctuations. 

KEY POINT: because  and   are separately conserved,  nonlinear interactions cannot transfer 
energy from  to , or vice versa. However, nonlinear interactions can transfer energy between 

scales, and both energy and cross helicity cascade from large scales to small scales.
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The cross helicity is defined as  

                                     

 

Because  and  are separately conserved, the cross helicity and total energy 
 are both conserved. 

We will consider ‘balanced turbulence’ in which , but ‘imbalanced turbulence’ 
with nonzero  plays an important role in systems like the solar wind.

ℋc = ℰ+ − ℰ− =
1
4 ∫all space

d3x [(w+)2 − (w−)2]

=
1
4 ∫all space

d3x (u2 + 2u ⋅ b + b2 − u2 + 2u ⋅ b − b2)

= ∫all space
d3x u ⋅ b

ℰ+ ℰ−

ℰ = ℰ+ + ℰ−

ℋc = 0
ℋc

Cross Helicity
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1. Linear waves. Ignore the nonlinear term entirely. The pressure fluctuation is then negligible 
(see discussion of the pressure term in yesterday’s lecture), and we recover just linear 
waves:  Alfvén waves and the incompressible (high- ) limit of the slow magnetosonic wave. 

2. Weak turbulence. You keep the nonlinear  term, but treat it as small compared to 
the linear  term. In this case, the ‘zeroth order’ solution to equation (1) is a bunch 
of linear waves, and then the higher-order solutions to this equation allow for interactions 
between these waves. Waves will oscillate many times at their linear frequencies before 
being distorted appreciably by nonlinear interactions. 

3. Strong turbulence. The nonlinear  term is comparable to or much larger than the 
linear  term. This regime is analogous to hydrodynamic turbulence or a critically 
damped harmonic oscillator. Waves will undergo  oscillation before being strongly 
distorted  by nonlinear interactions. 
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β
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≲ 1

Three Regimes of Waves and Turbulence.
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If you ignore the  term, Equation (2) is an advection equation for , which states that 
 is advected at the velocity  . 

If , then  is advected at velocity  along the field lines of the background magnetic 
field . 

If , then  is advected along the fields lines of the sum of  and the part of  
that arises from   (Maron & Goldreich 2001) 

The way that  and  displace field lines is the key to understanding nonlinear wave-wave 
interactions.
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δB

B0

perturbed magnetic 
field line

if v = -b = -δB/(4πρ)1/2, it is an a-  wave 
packet that moves to the right

phase velocity

Alfven wave packet, 
with δB ⊥ B0

An “incoming” a+ wave packet from the right would follow the 
perturbed field line, moving to the left and down.

An Alfven Wave 
Packet in 1D

Alfvén wave packet 
With δB ⊥ B0 δB

B0

perturbed magnetic-field line

if  , then this is a   
wave packet that moves to the right 

u = − δb w−

group velocity

An ‘incoming’  wave packet from the right would follow  
the perturbed field line, moving to the left and down.

w+



B
0

field lines

!
B

If �v = ��b, then a+ = 0 and this is an a� wave packet that propagates to the
right without distortion.

An ”incoming” a+ wave packet approaching from the right would follow the
perturbed field lines, moving left and down in the plane of the cube nearest to
you and moving to the left and up in the plane of the cube farthest from you.

An Alfven Wave 
Packet in 3D

δB B0

perturbed magnetic-field lines

If , then  and this is a  wave packet that propagates to the right 
without distortion. 

An ‘incoming’  wave packet from the right would follow the perturbed magnetic field 
lines, moving left and down in the plane of the cube nearest you and moving to the left and 

up in the plane of the cube farthest from you.

u = − δb w+ = 0 w−

w+
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BEFORE COLLISION:

! +a   wave packet a   wave packet

field line

                                      

!+ a   wave packeta   wave packet

of the other 

DURING  COLLISION: each wave packet follows the field lines

wave packet

velocity
phase

AFTER COLLISION: wave packets have passed through each 

                                   other and have been sheared

A Wave Packet 
 Collision

BEFORE COLLISION:

AFTER COLLISION: wave packets have passed through each other  
and have been sheared

DURING COLLISION: each wave packet follows the field lines  
of the other wave packet

 wave packetw−  wave packetw+

 wave packetw− wave packetw+

magnetic-field line

group 
velocity

This shearing reduces the 
perpendicular length scale  of 

the wave packets
λ

lλ



Shearing of a wave packet by field-line wandering

Maron & Goldreich  
(2001) 

As wave packets follow the perturbed field lines in a turbulent plasma, their perpendicular 
correlation lengths get smaller and smaller. This gives rise to the same type of energy 

cascade that we saw yesterday in our discussion of hydrodynamic turbulence.
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Anisotropic Energy  
Cascade

BEFORE COLLISION:

AFTER COLLISION: wave packets have passed through each other  
and have been sheared

DURING COLLISION: each wave packet follows the field lines  
of the other wave packet

 wave packetw−  wave packetw+

 wave packetw− wave packetw+

magnetic-field line

group 
velocity

lλ

In weak turbulence, neither 
wave packet is changed 

appreciably during a single 
‘collision,’ so, e.g., the right and 
left sides of the ‘incoming’ 
wave packet are affected in 

almost exactly the same way by 
the collision. This means that 
the collision does not alter the 
structure of the wave packet 

along the field line. You thus get 
small-scale structure transverse 

to the magnetic field, but not 
along the magnetic field. I.e., 

you get small , but not small . 
(Shebalin et al 1983, Ng & 

Bhattacharejee 1997, Goldreich 
& Sridhar 1997).

w+

λ l



Wavenumber matching condition:       

Frequency matching condition:         
 

One wave (say at ) must propagate in the opposite 
direction as the other two. 
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Anisotropic Cascade in Weak MHD Turbulence
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(Shebalin, Montgomery, & Matthaeus 1983)
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• As energy cascades to smaller scales, you can 
think of wave packets breaking up into smaller wave 
packets. 

• During this process,  decreases, but  does not. 

• Fluctuations with small  end up being very 
anisotropic, with .  

• In wavenumber  space, most of the energy at 
large wavenumbers is in the region where , 

where  is the component of  perpendicular 

(parallel) to the background magnetic field.

λ l

λ
λ ≪ l

(k)
k⊥ ≫ k∥

k⊥ (k∥) k



λ⊥

λ||
B

λ⊥

λ||

a- wave packet a+ wave packet

(Goldreich & Sridhar 1997, Ng & Bhattacharjee 1997)

λλ

ll

 wave packetw+ wave packetw−

• r.m.s. increment in  across a distance  in plane  to    velocity fluctuation of wave packet 

• Contribution of wave packets at  scale  to  is .  (Note: I am considering Alfvén wave 
packets, for which  is approximately  to . This is why   rather than .) 

• Assumption: local interactions dominate. Wave packets at  scale  are sheared primarily by wave packets of 
similar size. 

• A collision between two counter-propagating wave packets lasts a time  and changes  in each 
wave packet by an amount  

• The fractional change of  in each wave packet during 1 collision is , where 

 is the linear Alfvén wave period, and  is the shearing rate of eddies at  scale 

wλ = w± λ ⊥ B ∼

⊥ λ w∓ ⋅ ∇w± ∼ w2
λ /λ

w± ⊥ B ∇ → 1/λ 1/l

⊥ λ

Δt ∼ l/vA w±

∼ (w2
λ /λ) × Δt = w2

λ l/(λvA)

w± χ ∼
wλl
λvA

∼
τlinear

τnonlinear
τlinear = l/vA τ−1

nonlinear = wλ/λ ⊥ λ

∂
∂t

w± ∓ vA ⋅ ∇ w± = − ∇Π − w∓ ⋅ ∇w±

Let’s see if we can derive the inertial-range power spectrum for weak, incompressible MHD 
turbulence using the same types of arguments that we reviewed yesterday when discussing 

Kolmogorov (1941) famous  scaling for hydrodynamic turbulence. k−5/3
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 is like the linear Alfvén wave period, and  is the shearing rate of eddies at 
 scale  

• In weak turbulence, , whereas in strong turbulence . 

• In weak turbulence, the effects of successive collisions add incoherently, as in a random walk. The 
cumulative fractional change of  in a wave packet after  collisions is thus . In order for the 
wave packet’s energy to cascade to smaller scales, this cumulative fractional change must be . 

•  it takes  collisions before a wave packet’s energy cascades to smaller scales, and the 

energy cascade time is 

w± χ ∼
wλl
λvA

∼
τlinear

τnonlinear
τlinear = l/vA τ−1
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w± N ∼ N1/2χ
∼ 1
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λ2v2

A

l2w2
λ

×
l

vA
=

λ2vA

lw2
λ

∂
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w± ∓ vA ⋅ ∇ w± = − ∇Π − w∓ ⋅ ∇w±

(Goldreich & Sridhar 1997, Ng & Bhattacharjee 1997)
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ϵ
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Numerical Examples of  Inertial-Range Power Spectra in Weak Incompressible MHD Turbulencek−2
⊥

Galtier et al (2000) 

(based on weak turbulence theory)

Boldyrev & Perez (2009) 

(from direct numerical simulations of the 
 incompressible MHD equations)



Outline
1. Quick review of magnetohydrodynamics (MHD) 

2. Elsässer form of the incompressible MHD equations 

3. Linear waves, weak turbulence, and strong turbulence 

4. Weak incompressible MHD turbulence and the anisotropic energy 
cascade 

5. Strong incompressible MHD turbulence and critical balance 

6. Extras: compressible turbulence, inverse cascade of magnetic helicity 
helicity barrier, cosmic-ray scattering by MHD turbulence
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• From before, the fractional change of  in each wave packet during 1 collision is 

, where  is like the linear Alfvén wave period, and 

 is the shearing rate of eddies at  scale  

•   and     .    As  decreases, eventually  grows to a 
value , and the turbulence becomes strong

w±

χ ∼
wλl
λvA

∼
τlinear

τnonlinear
τlinear = l/vA

τ−1
nonlinear = wλ/λ ⊥ λ

wλ ∝ λ1/2 l ∝ λ0 ⟶ χ ∝ λ−1/2 λ χ
∼ 1

∂
∂t

w± ∓ vA ⋅ ∇ w± = − ∇Π − w∓ ⋅ ∇w±

(Goldreich & Sridhar 1995, 1997)



a   wave packet

λ
λ

λ
− +a   wave packet D  wave packetw+ wave packetw−

λ

D

• After colliding wave packets have inter-penetrated by a distance  satisfying , the 

leading edge of each wave packet will have been substantially sheared/altered relative to the trailing 

edge. Nonlinear interactions therefore reduce  until  and decrease  until  . 

• In weak turbulence,  but  grows to  as  decreases. If , then nonlinear interactions 
reduce  to . Incompressible MHD turbulence thus gravitates towards a state of critical balance in 
which  (Goldreich & Sridhar 1995). If the turbulence starts at  at some scale , it maintains 

 at smaller scales.

D
D
vA

×
wλ

λ
∼ 1

l l ≲ D χ χ =
l

vA
×

wλ

λ
≲ 1

χ ≪ 1 χ ∼ 1 λ χ ≫ 1
χ ∼ 1

χ ∼ 1 χ ∼ 1 λ
χ ∼ 1

What Happens If  Is Initially So Large That l χ ≫ 1
l



• In strong incompressible MHD turbulence, , and the energy cascade time is , 
just like the hydro-turbulence cascade time scale in yesterday’s talk was . 

• The cascade power within the inertial range is    

• As in our discussion of hydrodynamic turbulence,  and hence  

•     .  This implies that  — eddies become 

more anisotropic as  decreases. Defining  and ,    we get  

•

χ ∼ 1 τc ∼ λ/wλ
∼ λ/uλ

ϵ ∼
w2

λ

τc
∼

w3
λ

λ

ϵ ∝ λ0 wλ ∝ λ1/3

χ =
wλl
λvA

∼ 1 ⟶ l ∝ λ/wλ ∝ λ2/3 l
λ

∝ λ−1/3

λ k∥ = 1/l k⊥ = 1/λ k∥ ∝ k2/3
⊥

k⊥E(k⊥) ≡ (w2
λ )λ=1/k⊥

⟶ E(k⊥) ∝ k−5/3
⊥

The Kolmogorov-Like Power Spectrum of Critically Balanced MHD Turbulence 
(Goldreich & Sridhar 1995)
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• The cascade power within the inertial range is    

• As in our discussion of hydrodynamic turbulence,  and hence  

•     .  This implies that  — eddies become 

more anisotropic as  decreases. Defining  and ,    we get  

•

χ ∼ 1 τc ∼ λ/wλ
∼ λ/uλ

ϵ ∼
w2

λ

τc
∼

w3
λ

λ

ϵ ∝ λ0 wλ ∝ λ1/3

χ =
wλl
λvA

∼ 1 ⟶ l ∝ λ/wλ ∝ λ2/3 l
λ

∝ λ−1/3

λ k∥ = 1/l k⊥ = 1/λ k∥ ∝ k2/3
⊥

k⊥E(k⊥) ≡ (w2
λ )λ=1/k⊥

⟶ E(k⊥) ∝ k−5/3
⊥

The Kolmogorov-Like Power Spectrum of Critically Balanced MHD Turbulence 
(Goldreich & Sridhar 1995)



Numerical Simulations of Strong Incompressible MHD Turbulence 
(Cho & Lazarian 2000)



Solar Wind Turbulence 
(Chen et al 2020 — Parker Solar Probe measurements)



1. Intermittency 

2. Compressibility 

3. Dynamic Alignment 

4. Imbalance  

5. Kintetic Alfvén wave turbulence 

6. Helicity barrier 

7. Spherically polarized Alfvén waves and switchbacks 

8. Cosmic-ray scattering

Other Topics



Conclusion
• In incompressible MHD turbulence, nonlinear interactions occur only 

between counter-propagating wave packets.  

• In weak incompressible MHD turbulence: (1) there is no parallel 
cascade; (2) , and (3) at sufficiently small scales the critical 
balance parameter  increases to 1, and the turbulence becomes 
strong. 

• In strong incompressible MHD turbulence: (1)  at all scales and 
the turbulence remains strong throughout the inertial range; (2) 

; and (3)  , implying that the eddies or wave 
packets become increasingly anisotropic as you go to smaller .

E(k⊥) ∝ k−2
⊥

χ

χ ∼ 1

E(k⊥) ∝ k−5/3
⊥ l ∝ λ2/3

λ


