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Goals - Similar to Yesterday's Talk

To review a few things from earlier this week, as doing so can help key ideas to sink in.
To ‘de-mystify’ the subject of MHD turbulence for you.

To show you a few classic (and broadly useful) results, but also to explain carefully how
you can recover those results for yourself.

This means:
* Wherever possible, I'm going to show you all the steps.

* Much of this talk will be dry/mathematical, and there are many cool ideas and results
that | will not have time to share with you (sorry).

» But for many of you, this level of talk is not available elsewhere. Conference talks are
way too advanced for students trying to learn about turbulence, and classes often don't
cover this material. So | think you will find this useful, and worth your careful attention.
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Outline

Quick review of magnetohydrodynamics (MHD)
Elsasser form of the incompressible MHD equations
Linear waves, weak turbulence, and strong turbulence

Weak incompressible MHD turbulence and the anisotropic energy
cascade

Strong incompressible MHD turbulence and critical balance

Extras



Conservation of Mass

Consider an arbitrary fixed volume €2 with boundary §
within a fluid with density p(x, 7) and flow velocity

u(x,t). The mass within 2is M = J pdix.
Q

dM/dt is just the rate at which mass flows in through
the boundary of €2

ap

_)[ —d3x:—$pudA:—J V(pu)d3x
@) S @)

ot

As € is arbitrary, everywhere

vectors in bold italic font

S/

dA

‘continuity equation’



Newton’s Second Law: a = F/m

Suppose a fluid has velocity u(x, 7). Is a = a—u(x, 1) ! No!
[

Consider a fluid element with position x(#) and velocity u(x(z), ). Then

u(x(1),t) = %x(t), and

— (o t>—(i+d—"’-v) (x(0 r)—(i+ -V) (x(1).1
T T U T R D= ™ D

0
The quantity (— +u - V) Is called the Lagrangian or convective time derivative.

ot

It's the time derivative in a frame that follows the fluid.



Pressure Force Per Unit Volume = — Vp
dA

S

Pressure force on an arbitrary fluid element of volume €2 with boundary 3

Fz—ﬂgpdAz—ﬂgpI-dAz—J' V-(pI)d3x=—J Vp d’x
S S @) @)

As (2 is arbitrary, the pressure force per unit volume everywhere is — Vp

({ is the identity matrix. Third equality is Gauss’s theorem applied to each component of F' separately)



Lorentz Force Per Unit Volume

1
Y g (E+—us><B>
C

species s

g, = charge of species s, n, = number density of species s, u__ . = average velocity of species s



Lorentz Force Per Unit Volume

2. i s<E+lu XB) (qu )E +—(qu )XB=%J><B

species S

This Is the charge density, which
vanishes because plasma is quasineutral

This is the charge flux, which is by definition the current density J

g, = charge of species s, n, = number density of species s, u__ . = average velocity of species s



Lorentz Force Per Unit Volume

2. i s(E+lu XB) (qu )E +—(qu )xB=%J><B

species S

dr 1 oE C
Ampere'sLaw:. VXB=—J—-—— — J=—VXB
C c Ot 4

In MHD, we drop this displacement-current term on
the assumption that the characteristic phase
velocities of fluctuations are much smaller than the
speed of light.



Lorentz Force Per Unit Volume

2. i s<E+lu XB) (qu )E +—(qu )xB=%J><B

species S

dr 1 oE C
Ampere'sLaw:. VXB=—J—-—— — J=—VXB
C c Ot 4

1 1
— ) 4, E+—uxB)=-—(VxB)xB



Lorentz Force Per Unit Volume

I s(E+lu XB) (qu )E +—(qu )xB=%J><B

species S

dr 1 oE C
Ampere'sLaw:. VXB=—JJ—-—— — J=—VXB
C c Ot 4

1 1
— ) g, E+—uxB)=——(VxB)xB

1
B,0,B,, = (00, — OO B19,B,,, = (B,0,)B; — —0, (B By)

(VX B)xB|. = €;(€,,9,B,)By = 2

iki€jlm



Lorentz Force Per Unit Volume

2. i s(E+lu XB) (qu )E +—(qu )xB=%J><B

species S

dr 1 oE C
Ampere'sLaw:. VXB=—J—-—— — J=—VXB
C c Ot 4

1 1
— ) 4, E+—uxB)=-—(VxB)xB

1
B,0,B,, = (04,0, — 04n0;)B9,B,, = (B,0,)B; — —0,(B,B))

(VX B) X B|. = €;(€,,9,B,)By = 2

kl ]lm

B2

1 1
—> quns E+;MSXB =_V8_7[+4_71'BVB



force per unit mass

o

0
ot

force per unit volume

mass per unit volume

—u+u-Vu)=—V



Induction Equation (Ohm’s Law)

For a fixed, metal conductor: E = nJ, where E is the electric field and 7 is the
resistivity



Induction Equation (Ohm’s Law)

For a fixed, metal conductor: E = nJ, where E is the electric field and 7 is the
resistivity

For a perfectly conducting fluid with velocity &, you replace E (the electric field in the lab

1

frame) with E + —u X B (the electric frame in the plasma rest frame) and sety = 0
C

1
—> E+—uxB =0
C
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Take curl of this equation and multiplybyc: —> ¢cVXE + VX (uXxB) =0



Induction Equation (Ohm’s Law)

For a fixed, metal conductor: E = nJ, where E is the electric field and 7 is the
resistivity

For a perfectly conducting fluid with velocity &, you replace E (the electric field in the lab

1

frame) with E + —u X B (the electric frame in the plasma rest frame) and sety = 0
C

1
—> E+—uxB =0
C

Take curl of this equation and multiplybyc: —> ¢cVXE + VX (uXxB) =0

oB oB
Use Faraday's Law ¢V X E = — —: —> — = VX (u XB)

ot ot



ldeal MHD Equations

(Ideal means no dissipation — i.e., no resistivity or viscosity)

P LV (ou) =0
- . U) =
ot o

0 B* ]
p\—u+u-Vu )|=-V|{p+—|+—B-VB
ot 37T 4

oB
— = V X (u X B)
ot

Is this a closed set of equations? |.e., can we solve them to determine the unknowns??
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ldeal MHD Equations

(Ideal means no dissipation — i.e., no resistivity or viscosity)

P LV (ou) =0
- . U) =
ot o

0 B* 1
p\—u+u-Vu )|=-V|{p+—|+—B-VB
ot ST 4r

OB
— = V X (u X B)
ot

3 equations for the 4 variables p,u, B,p — we need a 4th equation in order to solve
for these 4 variables. This is the energy equation. We'll consider 3 simple examples.



ldeal Adiabatic MHD

P LV (ou) =0

S o u —

ot .
0 B? ]

p\—u+u-Vu )| =-V|{p+—\|+—B-VB

ot ST A

ob

— = VX (uXB)

ot
o | 0 p

Adiabatic evolution: (— + u - V) (—) =0
ot pY

(A reasonable approximation when the heat flux and other forms of heating/cooling can be neglected.)



ldeal Isothermal MHD

P LV (ou) =0
- . U) =
ot o

0 B? 1
p\—u+u-Vu )| =-V|{p+—\|+—B-VB
ST 41

oB
— = VX (u XB)
ot

p = pcsz, where the sound speed ¢, Is a constant

(A reasonable approximation when rapid heat conduction prevents much temperature variation.)



ldeal Incompressible MHD

P LV (ou) =0
- . U) =
ot o

0 B* 1
p\—u+u-Vu )| =-V|{p+—\|+—B-VB

ot ST 4
oB
— = VX (uXB)
ot
p = constant V-u=>0

(A reasonable approximation at large 8 = 87p/B* and small Mach number U/ Cs. Butits simplicity has made it

extremely useful for understanding MHD turbulence more generally, so we will focus on incompressible MHL
turbulence today.)

-




ldeal Incompressible MHD

ap Automatically satisfied given
— Eptt) =0 incompressibility conditions

ot

0 B* 1
p\—u+u-Vu )| =-V|{p+—\|+—B-VB

ot ST 4

oB

— = VX (uXxBb)

ot

p = constant V-u=>0

(A reasonable approximation at large 8 = 87p/B* and small Mach number U/ Cs. Butits simplicity has made it

extremely useful for understanding MHD turbulence more generally, so we will focus on incompressible MHL
turbulence today.)

-




taeat Incompressible MHD

—a—p—l—V——épua—G— Automatically satisfied given
Ot - incompressibility conditions

0 B? ] ,
p|\—u+u-Vu|=-V|p+— |+—B  -VB+pvV-u

ot ST 4r
oB ,
— = VX (uXB) +nV~-B
ot
p = constant V-u=>0 cutr scalo, of tartrence
MrmsL MrmsL

Reynolds number Re = Magnetic Reynolds number Re, =

4 n



Key ldeas About MHD from Earlier Lectures

1. Two types of magnetic forces (per unit volume): the magnetic pressure
B 1
force — V— and the magnetic-tension force —B - VB

ST A

2. Flux conservation
3. Frozen-in law.

4. Alfvén waves.



Outline

2. Elsasser form of the incompressible MHD equations



Change of Variables

1 oB
times the induction equation — = V X (u X B)

\/4rp ot

0 B
—> — =V X(mXxb), whereb = .
ot \/4rp

1 0 B? 1
— times the momentumeq.p| —u+u-Vu | =-V|{p+—\|+—B-VB
I, ot ST 4r

ou + (B?/8
—> E+u-Vu=—VH+b-Vb, where HEM
P



A Simpler Form for the Induction Equation
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A Simpler Form for the Induction Equation

For example,
3 3

3
]m ma Uy < 2 2 251l Jm ma U

j=1 =1 m=1



A Simpler Form for the Induction Equation

im-j

For example

3 3 3
U, < ZZ 25 Oimb ity = ZZEllbdul

=1 I=1 m=1 =1 I=1

o0 b, =Db. analogous to "OO fx)o(x —a)dx = f(a)



A Simpler Form for the Induction Equation

im-j

For example

Uy < iiié Oimb Oty = ZZ&llbaul— Zbdu

=1 I=1 m=1 =1 I=1

o0 b, =Db. analogous to "OO fx)o(x —a)dx = f(a)



A Simpler Form for the Induction Equation

(VX @xb),=[b-Vu+uV-b—->bV-u—u-Vb|



A Simpler Form for the Induction Equation

(VX @xb),=[b-Vu+uV-b—->bV-u—u-Vb|

ob
E:Vx(uxb)=b-Vu+uV-b—bV-u—u-Vb



A Simpler Form for the Induction Equation

(VX @xb),=[b-Vu+uV-b—->bV-u—u-Vb|

ob
EzVx(uxb):b-Vu+uN—bN—u-Vb



A Simpler Form for the Induction Equation

(VX @xb),=[b-Vu+uV-b—->bV-u—u-Vb|

ob
EzVx(uxb):b-Vu+uN—bN—u-Vb

ob
—=b-Vu—u-Vb
ot



Change to Elsasser Variables z*= = u + b

0 ob
= _VI+b-Vb—u-Vu (1) —=b-Vu—-u-Vb (2
ot ot
N 1 ) 1 _
ZF=uzxb u=5(z++z) b=5(z+—z)



Change to Elsasser Variables z*= = u + b

ou

—=—VII+b-Vb—u-Vu
ot

F=uxb u=%(z++z‘)

1
— VII +

7@ =2 Ve -2 -

(1)

ob
—=b-Vu—u-Vb
ot

1

(2)

b= (zt—z7) ()= (2) yields:



ou
ot

Change to Elsasser Variables z*= = u + b

ob
—VII+b-Vb—u-Vu (1) =

1 1

ZF=uzxb u=5(z++z‘) b=5(z+—z‘)

|
— VI +—
4

z"—27)- V@t —-z) - +27) - Vet +z7)

—=b-Vu—u-Vb (2)

(1) £ (2) yields:



Change to Elsasser Variables z*= = u + b
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Change to Elsasser Variables z*= = u + b

B ob
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ou
ot

Change to Elsasser Variables z*= = u + b

ob
= —VII+b-Vb—u-Vu (1) E=b-Vu—u-Vb (2)

1 1

7 =uzxb U = > (z+ +z‘) b = (z+ —z‘) (1) £ (2) yields:

2

— VII +% zt—27) V@t -z2)— @ +27) Ve +z)+x @ —z7) - Ve T +z2)F @ T +27) - V@t —z7))

In case you're not used to this notation: you either take the upper sign
in every = and F, or you take the lower sign in every = and =F.

Now expand out all the products



Change to Elsasser Variables z*= = u + b

0 ob
A e _VI+b-Vb—u-Vu (1) — =b-Vu-u-Vb (2
ot ot
N 1 B 1 B ,
" =uzxb uzz(z++z ) b=5(z+—z ) (1) £(2) yields:
% = — VII +% @t —z27) - Ve —-2) - "+2) - Ve +z2) 2@ -27) - Ve T +2) F @ +z27) - V&t -2

0 1
EZi: _VH+Z [Z+-Vz+—z+-Vz‘—z‘-Vz++z_-Vz_



Change to Elsasser Variables z*= = u + b

0 ob
A e _VI+b-Vb—u-Vu (1) — =b-Vu-u-Vb (2
ot ot
N 1 B 1 B ,
" =uzxb uzz(z++z ) b=5(z+—z ) (1) £(2) yields:
% = — VII +% @t —z27) - Ve —-2) - "+2) - Ve +z2) 2@ -27) - Ve T +2) F @ +z27) - V&t -2

0 |
EZi: —VH+Z 2t Vzt -zt VzT—z7-Vzt4z7-VzT —z"-Vzt -zt Vz7—z7-Vzt —z7 - Vz~



Change to Elsasser Variables z*= = u + b

B ob
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07~ |

% = — VII t zt—27) V@t -z2)— @ +27) Ve +z)+x @ —z7) - Ve T +z2)F @ T +27) - V@t —z7))
0o . 1 L _ ~ L _ _
EZ‘=—VH+Z[z+-Vz+—z+-Vz -z -Vzt+z7-Vz7 —z"-VzT -z VzT -z -VzT -z - Vz

+z7-VzTxz7-Vzo F77 - VT F7 -V



Change to Elsasser Variables z*= = u + b
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Change to Elsasser Variables z*= = u + b
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0 1
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Change to Elsasser Variables z*= = u + b

B ob
a_l:=—VH+b~Vb—u-Vu (1) —=b-Vu-u-Vb (2

7 =uzxb u=%(z++z‘) b=%(z+—z‘) (1) £ (2) yields:

— = —VII +% zt—27) V@t -z2)— @ +27) Ve +z)+x @ —z7) - Ve T +z2)F @ T +27) - V@t —z7))




Change to Elsasser Variables z*= = u + b

B ob
a_l:=—VH+b~Vb—u-Vu (1) —=b-Vu-u-Vb (2

7 =uzxb u=%(z++z‘) b=%(z+—z‘) (1) £ (2) yields:

— = _VII +% @t -2z27)- Ve -z2) - @ +2) - Ve +z2) 2@ -2 - Ve T +2) F @ +27) - V@t —27)




Change to Elsasser Variables z*= = u + b

B ob
a_l:=—VH+b~Vb—u-Vu (1) —=b-Vu-u-Vb (2

7 =uzxb u=%(z++z‘) b=%(z+—z‘) (1) £ (2) yields:

— = _VII +% @t -2z27)- Ve -z2) - @ +2) - Ve +z2) 2@ -2 - Ve T +2) F @ +27) - V@t —27)




Change to Elsasser Variables z*= = u + b

B ob
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%z———VH+%W FVZT -2 VZt T — g NE — g Vo~ Vot — gV
iz/‘?ffiz - VZTFZ - VzZ +z/w‘?z/‘+y‘(z +z7- VT FzZ7 - VzZ ip/‘?f]
0

1
Ezi — VII + — [—z+ Vz= —z~-Vzt+zt . Vzmxz7- VY




Change to Elsasser Variables z*= = u + b
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+ + = — + + _— - +
—z72 - =—=VIl+—|= 2 —2 V77T &% FZ -VzZ
Py 5 [ W ]

- 0z o
Choose the upper signineach*tand 1 — —=—-VII—-72"-Vz



Change to Elsasser Variables z*= = u + b

B ob
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Choose the lower sign ineach + and 1 — — =" VII —z7.-Vz~
[



Change to Elsasser Variables z*= = u + b

? ob
A o VI+b-Vb-u-Vu (1) & b Vu-u-vb (2
ot ot

I _ 1 . |
z—:uib u:a(z_l_—kz ) b:a(z_l_—z ) (1)1(2)}7161(18




Change to Elsasser Variables z*= = u + b

? ob
A o VI+b-Vb-u-Vu (1) & b Vu-u-vb (2
ot ot

I _ 1 . |
Z—:uib u:E(Z+—|—Z ) b:5<z+—z ) (1)i(2)y1€1ds




Change to Elsasser Variables z*= = u + b

? ob
A o VI+b-Vb-u-Vu (1) & b Vu-u-vb (2
ot ot

I _ 1 . |
Z—:uib u:E(Z++Z ) b:5<z+—z ) (1)i(2)y1€1d8




Alternative Formulation of Elsasser Variables

Let B = B+ oB, where B, is the mean magnetic field, which is a constant.

B
Then = =v,+0b, wherev, = Y is the Alfvén velocity,
\/ 47p \/ 47p
and z*=uxb=uxébxv,=wrxv,, where w*=u=x5b
o 0T I |
Substitute this expression into — = — VII —z7 - Vz~. Note that v, is a constant.
[
—> —w* =— VIl — w*F.-Vw*= £ v, - VW™
ot
0
—> —w*E Fyv,-Vwt == VIl — wF . Vw™



Important Slide: A Few Key Points About the Elsasser Form of MHD

0 _
atw .Vw® =—VII — wF. Vw™ (1)

» As in our discussion of hydrodynamic turbulence yesterday, the role of the pressure term — VIl is
simply to cancel out the compressive part of the nonlinear term —w¥ - Vw™ to maintain V - w* = 0.

0
. Asw™/v, = 0, the right-hand side of Eq. (1) becomes negligible — —w™ .Vw* = 0.

ot
The solution to this linear advection equation is w=(x, t) = f(x £ v,t), where fis an arbitrary

function.
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Important Slide: A Few Key Points About the Elsasser Form of MHD

0 _
atw .Vw® =—VII — wF. Vw™ (1)

» As in our discussion of hydrodynamic turbulence yesterday, the role of the pressure term — VIl is
simply to cancel out the compressive part of the nonlinear term —w¥ - Vw™ to maintain V - w* = 0.

0
. Asw™/v, = 0, the right-hand side of Eq. (1) becomes negligible — —w™ .Vw* = 0.

ot
The solution to this linear advection equation is w=(x, t) = f(x £ v,t), where fis an arbitrary

function. This solution describes w™ “fluctuations’ that propagate at velocity v ,. These are linear

Alfvén waves and (the high-f limit of) slow magnetosonic waves (sometimes referred to as pseudo-
Alfvén waves). Note: w™ propagates anti-parallel to B,, and w™ propagates parallel to B,
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. If either w™ or w™ vanishes throughout an open region of space, then the nonlinear term vanishes

throughout that region. — nonlinear interactions (and hence turbulence) arises only from ‘collisions’
between counter-propagating waves. (lroshnikov 1963; Kraichnan 1965)
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function. This solution describes w™ “fluctuations’ that propagate at velocity v ,. These are linear
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|
—

- The linear solution w=(x, ) = f(x % v,) is an exact nonlinear solution if w¥



Movie of Colliding Alfven-Wave Packets
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Conservation Laws

%Wii"A‘VWi =— VIl — w*-Vw™ (1)
Take dot product with w* — lﬂ (Wi)z + l,, .V (Wi)2 — WwE.V[[— —wT.V (wi)z
2 ot 2 A >
Use V-wE= Vovy =0 — 20 (w5) 42V - (nrt)’ = = V- (W) =2 - (W)’
- o 2or ) T A= > W

Integrate over all of space. The pure divergence terms become, via Gauss's theorem, surface integrals
at infinite, which vanish because the plasma is confined to a finite volume. We then obtain

d&= 1

2
=0 where &= —[ d3x (wi) is the energy per unit mass in w™ fluctuations.
dr 4 all space

KEY POINT: because &1 and &~ are separately conserved, nonlinear interactions cannot transfer

energy from w™ to w™, or vice versa. However, nonlinear interactions can transfer energy between
scales, and both energy and cross helicity cascade from large scales to small scales.



Cross Helicity

1 2
The cross helicity is definedas #. = &7 — &~ = —J d x [(W+) - (W_)2]
4 all space

1
=ﬂ dx (u*+2u-b+b*—u*+2u-b—b?)
all space

= J' d>xu - b
all space

Because & and &~ are separately conserved, the cross helicity and total energy
& = &1 + & are both conserved.

We will consider ‘balanced turbulence’ in which Z . = 0, but ‘imbalanced turbulence’
with nonzero Z . plays an important role in systems like the solar wind.



Outline

3. Linear waves, weak turbulence, and strong turbulence



1.

Three Regimes of Waves and Turbulence.
0

atw .Vw* == VII — wF. Vw™ (1)

Linear waves. Ignore the nonlinear term entirely. The pressure fluctuation is then negligible
(see discussion of the pressure term in yesterday's lecture), and we recover just linear

waves: Alfvén waves and the incompressible (high-£) limit of the slow magnetosonic wave.

Weak turbulence. You keep the nonlinear w - Vw® term, but treat it as small compared to

the linear v, - Vw™= term. In this case, the ‘zeroth order’ solution to equation (1) Is a bunch

of linear waves, and then the higher-order solutions to this equation allow for interactions
between these waves. Waves will oscillate many times at their linear frequencies before
being distorted appreciably by nonlinear interactions.

Strong turbulence. The nonlinear w+ - Vw* term is comparable to or much larger than the
linear v, - Vw* term. This regime Is analogous to hydrodynamic turbulence or a critically

damped harmonic oscillator. Waves will undergo < 1 oscillation before being strongly
distorted by nonlinear interactions.



Outline

4. Weak incompressible MHD turbulence and the anisotropic energy
cascade
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Magnetic-Field-Line Displacements
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If you ignore the — V11 term, Equation (2) is an advection equation for w™, which states that
-+ . . + —
w—(x, 1) is advected at the velocity w* F v,.



Magnetic-Field-Line Displacements

0 _

Ewi$VA°VWi=—VH—W+-VWi (1)
0 —+ T —+

— owT+ (WFF vy)-VwE ==VII  (2)

If you ignore the — V11 term, Equation (2) is an advection equation for w™, which states that
-+ . . + —
w—(x, 1) is advected at the velocity w* F v,.

if wF = 0, then w™ is advected at velocity v, along the field lines of the background magnetic
field B,
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If you ignore the — V11 term, Equation (2) is an advection equation for w™, which states that
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w—(x, 1) is advected at the velocity w* F v,.

if wF = 0, then w™ is advected at velocity v, along the field lines of the background magnetic
field B,

f0 < w* < v,, then w™ is advected along the fields lines of the sum of B, and the part of 0B
that arises from w+ (Maron & Goldreich 2001)



Magnetic-Field-Line Displacements

0 _

EwilvA-Vwi=—V1'I—w+-VwJ—r (1)
0 . _ .

— W + (WFF vy) - Vws ==VII (2

If you ignore the — V11 term, Equation (2) is an advection equation for w™, which states that
-+ . . + —
w—(x, 1) is advected at the velocity w* F v,.

if wF = 0, then w™ is advected at velocity v, along the field lines of the background magnetic
field B,

f0 < w* < v,, then w™ is advected along the fields lines of the sum of B, and the part of 0B
that arises from w+ (Maron & Goldreich 2001)

The way that w* and w ™ displace magnetic-field lines is the key to understanding nonlinear
wave-wave interactions.



Alfvén wave packet AN AlfVen_ Wave
With 6B L B, N\ Packet in 1D

B,

J_per;rbed magnetic-field line

if u = — 6b,thenthisisaw™
wave packet that moves to the right

An ‘incoming’ w™ wave packet from the right would follow
the perturbed field line, moving to the left and down.



An Alfven Wave oB B
. R
Packet in 3D \ S o !

Ifu = — 6b, then w™ = ( and this is a w~ wave packet that propagates to the right
without distortion.

An ‘incoming’ w™ wave packet from the right would follow the perturbed magnetic field

lines, moving left and down in the plane of the cube nearest you and moving to the left and
up in the plane of the cube farthest from you.



BEFORE COLLISION:

] magnetic-field line
A/ A Wave Packet
A Collision
- = By
el group
w~ wave packet velocity w™ wave packet

DURING COLLISION: each wave packet follows the field lines
of the other wave packet

AFTER COLLISION: wave packets have passed through each other
and have been sheared

' ‘ This shearing reduces the
‘ ~ perpendicular length scale A of
) - the wave packets
X

/

w™ wave packet w~ wave packet




Shearing of a wave packet by field-line wandering
\e E.

As wave packets follow the perturbed field lines in a turbulent plasma, their perpendicular
correlation lengths get smaller and smaller. This gives rise to the same type of energy
cascade that we saw yesterday in our discussion of hydrodynamic turbulence.

Maron & Goldreich
(2001)




BEFORE COLLISION:

I ] magnetic-field line
/
[
el group
w~ wave packet velocity w™ wave packet

DURING COLLISION: each wave packet follows the field lines
of the other wave packet

AFTER COLLISION: wave packets have passed through each other
and have been sheared

yad N
DN
\

=ull

/

w™ wave packet w~ wave packet

Anisotropic Energy
Cascade

In weak turbulence, neither
wave packet is changed
appreciably during a single
‘collision,’ so, e.g., the right and
left sides of the ‘incoming’ w™
wave packet are affected Iin
almost exactly the same way by
the collision. This means that
the collision does not alter the
structure of the wave packet
along the field line. You thus get
small-scale structure transverse
to the magnetic field, but not
along the magnetic field. l.e.,

you get small A, but not small /.
(Shebalin et al 1983, Ng &
Bhattacharejee 1997, Goldreich
& Sridhar 1997).



Resonant 3-Wave Interactions in Weak Incompressible MHD Turbulence

_ - (Shebalin et al 1983)
Wavenumber matching condition: k=p +¢q (1)

Frequency matching condition:
Wy = W, + @, (2)
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Resonant 3-Wave Interactions in Weak Incompressible MHD Turbulence

_ - (Shebalin et al 1983)
Wavenumber matching condition: k=p +¢q (1)

Frequency matching condition:
Wy = W, + @, (2)

One wave (say at g) must propagate in the opposite
direction as the other two.

—> W, = + kv, W, =+ p,v, Wy = — VA
(1) — k,=p,+4q,

k.
vy X(2)— k,=p,—q,

<

energy cascade

energy

add these equations — k.= p. input

. (No way to transfer
subtract these equations — q. = energy to higher k)



Anisotropic Cascade in Weak MHD Turbulence

(Shebalin, Montgomery, & Matthaeus 1983)
_— >
B * As energy cascades to smaller scales, you can

J think of wave packets breaking up into smaller wave
packets.

» During this process, A decreases, but [ does not.

Fluctuations with small A end up being very
anisotropic, with 4 < [.

. In wavenumber (k) space, most of the energy at
* large wavenumbers is in the region where k; > kH’

where k (k”) is the component of k perpendicular

(parallel) to the background magnetic field.



—w* Fv,-VwT == VII — w¥. Vw~ A > R A

w~ wave packet w™ wave packet

Let's see if we can derive the inertial-range power spectrum for weak, incompressible MHD
turbulence using the same types of arguments that we reviewed yesterday when discussing

Kolmogorov (1941) famous k=" scaling for hydrodynamic turbulence.



(Goldreich & Sridhar 1997, Ng & Bhattacharjee 1997)
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w~ wave packet w ™ wave packet

- W, = r.m.s. increment in w= across a distance / in plane L to B ~ velocity fluctuation of wave packet
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Contribution of wave packets at L scale Ltow™ - Vw*is ~ w/%//l. (Note: | am considering Alfvén wave
packets, for which w™ is approximately L to B. Thisis why V — 1/4 rather than 1/1.)
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» Assumption: local interactions dominate. Wave packets at | scale A are sheared primarily by wave packets of
similar size.
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w~ wave packet w ™ wave packet

- W, = r.m.s. increment in w= across a distance / in plane L to B ~ velocity fluctuation of wave packet

. Contribution of wave packets at L scale Ltow™ - Vw™*is ~ w/%//l. (Note: | am considering Alfvén wave
packets, for which w™ is approximately L to B. Thisis why V — 1/4 rather than 1/1.)

» Assumption: local interactions dominate. Wave packets at | scale A are sheared primarily by wave packets of
similar size.

- A collision between two counter-propagating wave packets lasts a time Afr ~ [/v, and changes w= in each
wave packet by an amount ~ (w;tz//l) X At = wfl/ (AVy)



(Goldreich & Sridhar 1997, Ng & Bhattacharjee 1997)
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w~ wave packet w ™ wave packet

- W, = r.m.s. increment in w= across a distance / in plane L to B ~ velocity fluctuation of wave packet

. Contribution of wave packets at L scale Ltow™ - Vw™*is ~ W; 2/]. (Note: | am considering Alfvén wave
packets, for which w= is approximately L to B. This is why V — 1/4 rather than 1/1.)

» Assumption: local interactions dominate. Wave packets at | scale A are sheared primarily by wave packets of
similar size.

« A collision between two Counter-propagating wave packets lasts a time At ~ [/v, and changes w= in each
wave packet by an amount ~ (w [A) X At = %l/(ﬂvA)

+ W/ll Uinear
. The fractional change of w— in each wave packet during 1 collisionis y ~ —— ~ , Where

/IVA Thonlinear
= w,/ A is the shearing rate of eddies at L scale /4

—1

= l/v, is the linear Alfvén wave period, and t_ .. .

TUinear —



(Goldreich & Sridhar 1997, Ng & Bhattacharjee 1997)
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w~ wave packet w ™ wave packet

w,l T);
_ The fractional change of w™ in each wave packet during 1 collision is y ~ 4 liear , where

AVA Tnonlinear
= w,/ A is the shearing rate of eddies at

= [/v, is like the linear Alfvén wave period, and 7~

Tlinear nonlinear

1 scale /4
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w~ wave packet w ™ wave packet

w,l T);
_ The fractional change of w™ in each wave packet during 1 collision is y ~ 4 liear , where

AVA Tnonlinear
7. .. = /v, is like the linear Alfvén wave period, and 7! = w,/ A is the shearing rate of eddies at

nonlinear
1 scale A

- In weak turbulence, ¥y << 1, whereas in strong turbulence y 2> 1.
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w~ wave packet w ™ wave packet

w,l T);
_ The fractional change of w™ in each wave packet during 1 collision is y ~ 4 liear , where

AVA Tnonlinear
= w,/ A is the shearing rate of eddies at

= [/v, is like the linear Alfvén wave period, and 7~

Tlinear nonlinear

1 scale /4

- In weak turbulence, ¥y << 1, whereas in strong turbulence y 2> 1.

* |In weak turbulence, the effects of successive collisions add incoherently, as in a random walk. The
cumulative fractional change of w™ in a wave packet after N collisions is thus ~ Nl/z)(. In order for the

wave packet’s energy to cascade to smaller scales, this cumulative fractional change must be ~ 1.
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w~ wave packet w ™ wave packet

w,l T,
_ The fractional change of w™ in each wave packet during 1 collision is y ~ 4 limear , Where

/1VA Tnonlinear
= w,/ A is the shearing rate of eddies at

= [/v, is like the linear Alfvén wave period, and 7]

Tlinear nonlinear

1 scale /4

- In weak turbulence, ¥y << 1, whereas in strong turbulence y 2> 1.

* |In weak turbulence, the effects of successive collisions add incoherently, as in a random walk. The
cumulative fractional change of w= in a wave packet after NV collisions is thus ~ Nl/z)(. In order for the

wave packet’s energy to cascade to smaller scales, this cumulative fractional change must be ~ 1.

« —> jttakes N ~ )(_2 collisions before a wave packet’'s energy cascades to smaller scales, and the
o i /12‘6% [ /IZVA

energy cascade timeis 7, ~ y “Af = X — =

Pwz vy Iw?
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w~ wave packet w ™ wave packet

« —> it takes NV ~ )(_2 collisions before a wave packet’'s energy cascades to smaller
/lzvi [ /IZVA

2.0,2 - p)
lw/1 VA lw/1

scales, and the energy cascade time is 7, ~ )(_2At =
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w~ wave packet w ™ wave packet

« —> it takes NV ~ )(_2 collisions before a wave packet’'s energy cascades to smaller
/lzvi [ /Isz

scales, and the energy cascade time is 7, ~ ¥ AL = =
Pw?z vy Iw?

* As In hydro turbulence, within the inertial range the cascade power € Is independent

2 4
W) wyl

of A, where ¢ ~ — ~
(R /IZVA

. This means that w;, o« 1!/%, because [ is constant.
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w~ wave packet w ™ wave packet

« —> it takes NV ~ )(_2 collisions before a wave packet’'s energy cascades to smaller
/lzvi [ /Isz

scales, and the energy cascade time is 7, ~ ¥ AL = =
Pw?z vy Iw?

* As In hydro turbulence, within the inertial range the cascade power € Is independent

W/IZ le . 1/2 .
of A, where € ~ — ~ PP This means that w, o< A"'<, because [ is constant.
(2 VA

.k E(k)) = (W2>A=mﬂ — k E(k)) x k{' —|E(k)) o k[



Numerical Examples of kIZ Inertial-Range Power Spectra in Weak Incompressible MHD Turbulence
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Outline

5. Strong incompressible MHD turbulence and critical balance



(Goldreich & Sridhar 1995, 1997)
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w~ wave packet w ™ wave packet

* From before, the fractional change of w* in each wave packet during 1 collision is

Uinear L . , .
y ~ —— ~——— where 7. ... = [/v, is like the linear Alfvén wave period, and

/IVA Thonlinear

T = w,/A is the shearing rate of eddies at L scale 4

nonlinear

e w, x A% and lx A’ — y x 42712 As A decreases, eventually y grows to a
value ~ 1, and the turbulence becomes strong



What Happens If [ Is Initially So Large That y > 1

@ @

W  wave packet w™ wave packet

D w
. After colliding wave packets have inter-penetrated by a distance D satisfying — X 7’1 ~ 1, the
VA

leading edge of each wave packet will have been substantially sheared/altered relative to the trailing

[ w
edge. Nonlinear interactions therefore reduce [ until [ < D and decrease y until y = — X 7’1 < 1.
VA

- In weak turbulence, y << 1 but y grows to ~ 1 as 4 decreases. If y > 1, then nonlinear interactions
reduce y to ~ 1. Incompressible MHD turbulence thus gravitates towards a state of critical balance in
which y ~ 1 (Goldreich & Sridhar 1995). If the turbulence starts at y ~ 1 at some scale 4, it maintains
y ~ 1 at smaller scales.



The Kolmogorov-Like Power Spectrum of Critically Balanced MHD Turbulence
(Goldreich & Sridhar 19995)

- In strong incompressible MHD turbulence, y ~ 1, and the energy cascade time is 7, ~ A/w),,
just like the hydro-turbulence cascade time scale in yesterday’s talk was ~ A/u,.
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more anisotropic as 4 decreases. Defining k, = 1/land k; = 1/4, we get k; k2
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Numerical Simulations of Strong Incompressible MHD Turbulence
(Cho & Lazarian 2000)
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k=33 A1 /k bottleneck effect is observed before the dissipation cutoff the relation k ~ k%/3.In 256H-B,, 1 and 256P-B, 1, velocity fields follow the same scahng relation. However, magnetlc fields scale slightly differently.

k, ~ 90.



Solar Wind Turbulence
(Chen et al 2020 — Parker Solar Probe measurements)
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Other Topics

Intermittency

Compressibility

Dynamic Alignment

Imbalance

Kintetic Alfvéen wave turbulence

Helicity barrier

Spherically polarized Alfven waves and switchbacks

Cosmic-ray scattering



Conclusion

* |n incompressible MHD turbulence, nonlinear interactions occur only
between counter-propagating wave packets.

* |n weak incompressible MHD turbulence: (1) there is no parallel
cascade; (2) E(k|) k7?2, and (3) at sufficiently small scales the critical

balance parameter y increases to 1, and the turbulence becomes
strong.

» In strong incompressible MHD turbulence: (1) y ~ 1 at all scales and
the turbulence remains strong throughout the inertial range; (2)

E(k|) kIS/B; and (3) [ « A7, implying that the eddies or wave
packets become increasingly anisotropic as you go to smaller A.



